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A class of families of linear congruential pseudo-random sequences is defined, for which it 
is possible to branch at any event without changing the sequence of random numbers used in 
the original random walk and for which the sequences in different branches show properties 
analogous to mutual statistical independence. This is a hitherto unavailable, and computa- 
tionally desirable, tool. 0 1989 Academic Press, Inc. 

1. INTRODUCTION 

During the last forty or fifty years, the Monte Carlo method has been used with 
considerable success, to solve large mathematical problems too computationally 
complicated to yield to the classical numerical methods developed during the pre- 
vious four centuries. For general discussions, the reader is referred to, e.g., [ 1 - 81. 
In particular, there is an extensive history of the effective application of the Monte 
Carlo method to particle-transport problems, such as arise in the design of radiation 
shielding, nuclear reactors, and fission and fusion bombs (see, e.g., [9, lo]). 

While the method was originally conceived in terms of representing the solution 
of a problem as a parameter of a hypothetical population, and using a (truly) random 
sequence of numbers to construct a sample of the population, from which statistical 
estimates of the parameters can be obtained (see [3]); it soon became apparent, 
from the point of view of the need, both for repeatable results to “debug” the 
Monte Carlo computer programs and for a large, stable supply of suitable “random 
numbers,” that certain deterministic sequences exhibiting some of the properties of 
truly random sequences would be more useful in practice. These became known as 
pseudo-random sequences (and, by corruption of terms, as sequences of “pseudo- 
random numbers”) (see the above-mentioned references, and also [ 1 l-161). Some- 
what later, even less “random-looking” sequences, dubbed quasi-random, having 
exceptionally good uniformity properties and leading to fast convergence of the 
resulting Monte Carlo estimates, were proposed (see [ 17-191). The uniformity of 
distribution of the pseudo-random sequences was found to be imperfect when they 
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were used to define points in several dimensions [20-221, and several non-statisti- 
cal approaches were developed for error-analysis [ 18, 19, 23, 241. 

One of the most successful classes of pseudo-random number generators is the 
so-called linear-congruential algorithm (originally due to Lehmer; see [ 111). The 
sequence CL 51, 52, 53, -I= [tjljm_O o canonical pseudo-random numbers, which f 
should be independently uniformly distributed in the semi-open unit interval [0, l), 
is obtained from an integer sequence [x,, x1, x2, xg, . ..I = [x~],?=~, by 

rj = Xj/2M; (1) 

and the xi are uniquely determined by selecting M, a, b, and x0, and taking 

W>O) O<X~<~~, xj+,=axj+b(mod2M). (2) 

Given the integer parameters a and b and an initial integer x,,, each successive xj+ , 
is the residue of axj + b module 2M (i.e., the remainder when axj + b is integer- 
divided by 2”). When we perform binary computations, such as are now univer- 
sally used in digital computers, this residue is easily obtained, as the integer 
consisting of the M least significant bits of axj+ b. The value of A4 is mainly 
machine-dependent; in “supercomputers,” a typical value of M is 48, and then 
248 x 2.8 x 1014. Given integers Z and Q > 0, we shall henceforth write 

yielding 

R=<ZlQ) * (O<R<Q,RzZ(modQ)), (3) 

(Vj>O) xj+l= (ax,.+b12”). (4) 

Many calculations using the Monte Carlo method (including those of particle 
transport alluded to above) involve the use of long sequences of pseudo-random 
numbers to generate sequential histories of flights and collisions, usually referred to 
as random walks. By averaging appropriately selected scores (functions of single 
random walks generated in this way) over large numbers of such random histories, 
it is possible to estimate the parameters of interest with considerable accuracy. 

It is clear that different random sequences will, in general, produce different 
random-walk histories; and these latter, in turn, will generally lead to different 
scores. While it is inherent in the Monte Carlo method that its results should show 
random fluctuations, it is extremely convenient to be able to reproduce a given 
computational result exactly, when we wish to do so. In particular, this is important 
in the initial “debugging” stage of developing a new program (or program-module), 
when we need to separate the effects of desirable randomness from those of 
undesirable programming errors, so as to ensure that the program or module will 
do correctly what the programmer intends; and it is also useful when several runs 
must be made, to develop intentionally correlated random samples, all depending 
on the same random walk. Some of these ends can be achieved by storing, and later 
retrieving, the values of the thousands, millions, or even billions, of random 
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numbers required; but it is clearly much more convenient to redesign the random 
generator (algorithm) in such a way that no such mass-storage is required. The 
original invention of pseudo-random sequences was partly motivated by this need. 

When one attempts to reline the physics underlying a particle-transport computa- 
tion, by taking into account the concomitant generation and subsequent motion of 
additional particles or radiation, it is useful to compare the scores obtained with 
and without these refinements, for the same random walks. Since this leads to situa- 
tions in which the random walks branch in a tree-like manner, requiring random 
sequences of differing lengths and unpredictable relationships, the problem becomes 
far more complex. We are now required to be able to generate a tree structure of 
pseudo-random numbers, with good uniformity properties within each branch and 
good properties of independence between branches. In a typical conventional par- 
ticle-transport calculation, using non-branching random walks, we may compute 
some 103-IO* random walks, averaging perhaps lo*-lo6 steps each, with every step 
requiring around 10 random numbers; this adds up to a need for something of the 
order of 1O6-1O’5 random numbers. With current generators having periods of the 
order of 1014, such a requirement is acceptable, since techniques are available to 
increase the periods (without unacceptably increasing the time required to generate 
the random numbers) to the order of 1060 or so. 

However, if our model is expanded to allow branching at every step, a com- 
parable tree-structured calculation would, in principle, need some lo4 x 2”’ x 1O34 
to 109 x 2106 x 10301039 random numbers. It is, of course, entirely out of the question, 
in any case, to use this many random numbers; since, according to current 
astrophysical thought, the calculation would hardly have begun when the Sun, in 
its red-giant phase, would consume the Earth, just a mere 1026-1027 ns from now! 
The problem is, rather, to provide theoretical access to suitably distributed random 
numbers, so that they will be available as and when needed. The actual consump- 
tion of random numbers in a computations of this kind could hardly exceed some 
1Or6 or so, unless computer technology makes rather remarkable progress even in 
comparison with its astonishing record. Thus, we must rely on sampling techniques 
such as “Russian roulette” to keep the overall needs down. Nevertheless, we must 
be able to generate those random numbers that we do need, with appropriate 
properties of distribution. The present development is an attempt to address this 
potential need. The problem was first raised by Warnock (see [25, 261) and useful 
suggestions of a general and heuristic nature were made by him as to its solution. 
In the present paper (a development of [27]) I propose a possible explicit 
approach to the task of generating a large number of branching pseudo-random 
sequences which are mutually independent in a rigorously specified manner. 

2. PRELIMINARIES 

For any positive integer n and real a, let 

S,(a) = 0 and S,(a)= 1 +a+a2+a3+ ... +an-l. (5) 
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This is consistent, since the sum S,(a) has n terms. Then 

&(a) = n, if a= 1, (6) 

and 

S,(a) = (a” - 1 )/(a - 1 ), if a#l. (7) 

LEMMA 1. For any non-negative integer m and real z, 

&(Z) = (1 + z) S,(z2). 

ProojY By (5), if m = 0, then (8) is immediate; and, otherwise, 

(8) 

S,,(z)=(l+z)+(z*+z3)+ ... +(z*+*+Z*m-‘) 

=(l +z)(l +z2+z4+ .‘. +z’“-2); (9) 

which yields (8) at once. 1 

DEFINITION 1. If N is any positive integer, then we express the fact that another 
positive integer k is a factor of N [i.e., integer-divides it, without a remainder] by 
the usual notation 

klN. (10) 

We now see, in particular, that there is a unique non-negative integer U, such that 
k” divides N, but k“+’ does not. We shall write 

k” h N 

to express this situation. If v < U, then we also have, as in (lo), that 

(11) 

k”)N. 

We extend the notation (11) to N = 0 by writing, for any k > 0, 

(12) 

km0 0. (13) 

The notation defined in (11) and (13) is slightly tricky: while k 1 N is a relation 
between two integers, k and N, k” h N is a relation between three integers, k, U, and 
N. When we use an abbreviation, such as “8 0 x,” it will be understood to mean 
‘r23 d x”: the number on the left of the symbol h will always be an integer power 
of one uniquely determined prime k. Hereinafter, we shall particularly make use of 
the special case, when k = 2. 

LEMMA 2. For any odd positive integer a, there are unique positive integers q and 
r, such that 

a=(2r-1)29-l. (14) 
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Proof: Since a is odd, a + 1 is necessarily even. Thus, there is a unique maximum 
q for which 2’r1 (a+ l), and q> 1. For this q, we have 2q fi (a-t 1). Also, the 
quotient, when we divide (a + 1) by 2q, is odd; whence it can be expressed uniquely 
in the form (2r - 1). This immediately yields (14). 1 

LEMMA 3. With a, q, and r defined as in Lemma 2; if u > 0 and v > 0 are the 
unique integers such that 2”1) n and 2” 0 S,(a), then v = u + q - 1; that is, 

2”+q-’ h S,(a) if and only if 2” ft n. (15) 

Proof By repeated application of Lemma 1, we get that 

S,(a) = (1 + a) S,,,(a’) = (1 + a)( 1 + a’) S,,(a4) = . . . 

=(l +a)(1 +a’)(1 +a”)..+(1 +a’“-‘)SnlzU(a2”). (16) 

Also, by (14), 2q 0 (1 + a), and q 2 1; and every binomial factor on the right of (16), 
after the first one, is of the form 1 + a2m, with integer m > 1. Since a is odd, either 
a z 1 or a = 3 (mod 4); whence a2 z 1 (mod 4); and, therefore, 

(Vm > 1) a** E 1 (mod 4). (17) 

Hence, (Vm 2 1) 1 + a2* E 2 (mod 4); i.e., (Vm 2 1) 2 0 (1 + a2m). Therefore, the 
product of all the binomial factors on the right of (16) is divisible by 2 exactly 
q + (u - 1) times. Finally, we observe that, since a is odd by our hypothesis, every 
power of a is odd too; whence, by (5), the last factor on the right of (16) is the sum 
of an odd number, n/2”, of odd numbers, and so must itself be odd. Thus, when u 
and v are defined as stated, v = q + u - 1, and (15) follows immediately. 1 

DEFINITION 2. If [x0, xi, x2, . ..] = [~~]j”=~ is a sequence of numbers, and if we 
are given that, for some 0 < i < j, 

(Vk>O) Xj+k=Xi+k, (18) 

then we say that the sequence is periodic. If ;1 is the least value of the difference j- i, 
for which (18) holds, then we say that the period is 1. 

If h is the least value of i satisfying (18) for j - i = 1, we say that the periodicity 
starts at index h; and if h = 0, then we say that the sequence is completely periodic. 

Note that, if the sequence [xi],Y, is periodic, with period 2, starting at index h; 
then, for any offset c(, the same is true of the sequence [xj - a],&. 

LEMMA 4. Given that the sequence [xj],eO is periodic with period I, starting at 
index h, and given i and j, with i < j, satisfying the relation (18); it follows that 
p = j- i is an integer multiple of A; that is, 
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Proof. Since Iz is minimal, we have 0 < 1 <p. Because the sequence is periodic 
with period A, starting at index h; it is clear from (18) that x,,+ k = x~,,+~)+, = 
Xh+(l+k)=X(h+i)+(i.+k)=Xh+(2i+k)= “’ ; that is, by induction on integers r, 

(Vk>O) (Vr>O) Xh+ri.+k=Xh+k; (20) 

and, similarly, by (18) for i and j, by induction on integers s, 

(vk>o) (vs>o) Xj+sp+k=X,+k. (21) 

Write n =max{i, h}, so that n ah and n> i; and replace k, throughout (20), by 
k + n -h and, throughout (21), by k +n - i. Then, whatever is true with the 
resulting universal quantifiers, namely, (Vk 2 h -n) and (Vk 2 i - n), is also true 
with the quantifier (Vk >, 0); so that 

(Vk >, 0) (Vr 2 0) (Vs B 0) Xn+ri.+k= x n+k= xn+sp,+k. (22) 

EUCLIDEAN ALGORITHM THEOREM. I’ y denotes the g.c.d. of positive 2 and p (so 
that y ) A and y Ip, and y is maximal), there are integers U0 and V,, such that 
y = UJ + V&. 

Proof Let Z be the set of all integers. The set 8 = { 13 = UA + V/.X U E Z, VE E}, 
has a subset 8 + = (0 = UA + VP: U E Z, VE Z, 0 > 0}, which is non-empty, since 
O<l=lxl+Ox~~O+ and O<~=OxA+lx~~8+. Let K=U,A+ VOp be the 
least 8 E @+. Integer-divide 1 by K; then I = IJIC + p (where 0 < p < rc), and so p = 
~-~K=(~--U~)~-~V~~E~. Since p<rc, and rc is minimal in @+, ~$8~; and 
therefore p =0 (i.e., K 1 A). Integer-divide p by K, to show, similarly, that “1~; 
whence IC I y, since y is the maximal divisor. Since we also know that y ( 1, y I p, and 
K E 0; y I K. Therefore, K = y. This proves the theorem. 1 

Now, U0 and V,, must have opposite signs, since we have that 0 < y < A <p; so 
that there must be non-negative integers r,, and sO, such that either (i) r,l -sop = y 
or (ii) 3,~ - r,A = y. In both cases, take r = r0 and s = s,, in (22); then, in case (i), 
replace n by v - s,,~; in case (ii), replace n by v - r,J.. Either way, we see that 

WkaO) X,+y+k=Xv+k. (23) 

But this means that the sequence is periodic, with period at most y. Since A is mini- 
mal, by Definition 2, we must have I <y. Thus, y = 1, and the lemma follows at 
once. 1 

This means that the period of a periodic sequence is unique. 

DEFINITION 3. Given a semi-open interval [A, B) on the real line, and a set J 
of Q points z1 < z2 < . . . < zo in it, we say that the points are cyclically equally 
spaced (CES) in [A, B) if 

z/~+I-zh=U-Al/Q for h= 1, 2, . . . . Q- 1. (24) 
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Note that this implies that (zr -A) + (B- ze) = (B- A)/Q also, since zo - z1 = 
(Q- l)(B-AYQ. If we imagine the interval [A, B), with the points of J in it, 
wrapped around a circle; then these Q points would be equally spaced around the 
circle. Note, too, that if the set J is CES in [A, B), so is any offset sets of points 
z,, - CI (reduced, modulo B - A, to fall in the interval). 

DEFINITION 4. Given the set J= (0, 1,2, . . . . Q - 1 }, CES in [0, Q); if the 
sequence [xi],& is periodic, with period A, starting at index h, and if the set K, = 
{x~},?~ of values taken by the xi, once the periodicity is established, is a subset of 
J, with P distinct points in it, and if, further, these P values are also CES in [0, Q), 
and P = A, then we say that the sequence is uniform in J, with coarseness Q/P. 

LEMMA 5. In the situation described in Definition 4, 

PIQ; (25) 

so that the coarseness of a uniform sequence is always a positive integer. 

Proof: The points of J may be thought of as equally spaced around a circle of 
circumference Q; the points of K (which are also in J) are also equally spaced 
around the circle. Thus, there is an integer G, such that adjacent points of K have 
a spacing just G times as great as that of adjacent points of J; that is, PG = Q; 
whence (25) follows. G is therefore the coarseness of the sequence in J. 1 

Note that, if the period of the sequence [xi];=, passes through all the points of 
J (that is, if P = Q), then the coarseness of the sequence in J takes its minimum 
possible value, namely, 1. 

DEFINITION 5. Given the set J= (0, 1, 2, . . . . Q - 1 }, CES in [0, Q); if two 
sequences [xi],?, and [x)],?=~ are such, that the difference-sequence, [6j]I??0, 
where 

(Vj20) sj= (xj-x,t12”), (26) 

is periodic, and is uniform in J with coarseness G; then we say, by analogy with the 
definition of uniformity and coarseness, that the two sequences are independent with 
respect to J, and that their consonance is G. 

3. ANALYSIS OF LINEAR CONGRUJZNTIAL GENERATORS 

We are interested in generating a canonical pseudo-random sequence [<j]z-, of 
numbers in [0, l), for use in Monte Carlo computations. We therefore want the tj 
to take a large number of distinct values, distributed with near-constant density in 
[0, 1). Our present consideration will be limited to the linear congruential sequen- 
ces, which are related through (1) to the integer sequences [xi],2 0 defined in (2) 
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or (4), with A4 a non-negative integer. This implies that, if we write (as we shall do 
henceforth) 

2”=Q, (27) 

then 

(Vj20) xjeJ= (0, 1,2 ,..., Q- l}, (28) 

and therefore 

(Vj>O) <je F= (0, l/Q, 2/Q, "'9 (Q- 1)/Q}* (29) 
In the terminology of Definition 3, the sets J and F are CES, in the semi-open 
intervals [0, Q) and [O, 1 ), respectively. 

Note that we may (and do, henceforth) assume, without loss of generality, that 
a and b are also integers selected from J. We further assume that a # 0. (If a = 0, 
then, clearly, by (4), for all ja 1, xi= b.) 

LEMMA 6. The recurrence relation (4) is satisfied, for all n 2 0, by 

x, = (a’% + S,(a) b I Q >, (30) 

where S,(a) is defined as the sum in (5). 

Proof When n = 0, we know that a” = 1 and the sum S,(a) = 0; so that, in fact, 
x, = anxO + S,(a) b. Suppose that the relation holds for n = k, say (this is initially 
true when k = 0). Then, by (4) with (3), we have that 

x k+~=(ax~+bIQ>=(aCakx,+S~(a)bl+bIQ> 
= (ak+‘x,+ [aS,(a)+l] blQ>; (31) 

and, by (5), it is easily seen that 

a&(a) + 1 = Sk, ,(a), (32) 

whence the congruence will also hold for n = k + 1. The lemma follows by 
induction. u 

LEMMA 7. The sequence [xi],?, is periodic, with period not exceeding Q. 

Proof: By (28), there are at most Q possible distinct values of xi; among the 
Q + 1 numbers x0, xi, x2, . . . . xo, there must be two values alike, and we can always 
further specify that all intermediate values be different from these and each other: 
xi=xj, say, with O<i<j and x~,x~+~,x~+~, . . . . xi- 1 all different (if some inter- 
mediate value xk = xi, say, replace j by k; if two intermediate values x,, = xk, say, 
replace i by h and j by k). It is now clear from the form of (4) that (18) will hold, 
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since each member of the sequence is determined solely and uniquely by its 
immediate predecessor, without regard to its position in the sequence. Hence, the 
sequence is periodic and, by Lemma 4, j- i is a multiple of the period, which thus, 
clearly, cannot exceed Q. 1 

LEMMA 8. If a is any even integer, the sequence [xj]Fz, is periodic, with the 
period 1. 

Proof: We have already seen that the period is 1 when a = 0. For any even a, 
clearly aM E 0 (mod Q); so there will be a unique minimal h, such that ah ~0 
(mod Q). If n 2 h; then by (5) 

S,(a) = S,(a) + ah&-,(a) = S,(a) (mod Q). 

Therefore, in particular, by (30) and (33), 

X - <a h+l- “+‘Xo+~h+,(a)bIQ>=(~,(a)bIQ> 

= (ahx,+S,(a) blQ)=lx,, 

(33) 

(34) 

whence, by Definition 2, the sequence is periodic, starting at index h, with 
period 1. 1 

Of course, a period of length 1 is of very little use for the generation of pseudo- 
random numbers, so we shall henceforth assume that a is odd. 

LEMMA 9. Zf a is any odd integer, then the sequence [xi];=,, is completely 
periodic. 

Prooj Consider the Q + 1 integers 1, a, a*, . . . . aQ, reduced modulo Q. Their 
values must lie in the set J; so, arguing exactly as in proving Lemma 7, we see that 
we must have O<i<j<Q, such that (a’lQ)=(ajlQ), while (ailQ), 
(ai+’ 1 Q), (ai+’ Q), . . . . ( ai- ’ I Q ) are all different. Thus, ai - a’ = ai(& i - 1) 
must be divisible by Q; and since a is odd, it follows that Q 1 (aipi- 1); so that 
there must be a positive integer m = j - id Q, such 

am E 1 (mod Q). (35) 

By (2) and (35), we have that xk-i =a”‘~~-~ =a’+‘(~~- b) (mod Q); so that, 
writing c = am- ’ and d = -cb, we have 

(Vka 1) xk-,=cxk+d(modQ), (36) 

or, by (3) 

(Vka 1) xk~I=(cx/,+dlQ). (37) 

Thus, each member of the sequence is determined solely and uniquely by its 
immediate successor, without regard to its position in the sequence, and Eq. (18) 
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also holds for negative k, so long as the index i + k 2 0. This extends the periodicity 
of the sequence (already established in Lemma 7) to the starting index 0, proving 
the present lemma. 1 

From now on, we shall always suppose that a is odd, satisfying (14) and 
thereby uniquely defining positive integers q and r, as stated in Lemma 2. Since 
we also suppose (without loss of generality) that a E J, we see, by (28), that 
1~ (2r- 1) 24- 1~2~-- 1; whence r 3 1, and therefore 24~2~. Since qa 1, we 
conclude that 

1 <q<M. (38) 

Now write 

w=(x,--~glQ)=((a-l)x,+bIQ); (39) 

and,by appeal to Definition 1, put 

2’0 b, 2” ft x0, 2Vf(a-1), 2gll w. (40) 

Since (again without loss of generality) we also suppose that b E J and x0 E J, it now 
follows that, unless b = 0 (c = 00 ) or x0 = 0 (s = co), 

O<c<M and O<S<M; (4.1) 

and, since a is odd, a - 1 is even, whence d > 1. 

LEMMA 10. The period A. of the completely periodic sequence [x~],?~ is given by 

A=2”, where u=max{O, M- g-q+ l}, (42) 

and g is defined uniquely by (39) and (40). 

Proof: By Definition 2 and (30), 1 is the least j for which 

x,=xj= (a’xo+Sj(a)bIQ). (43) 

If a # 1, by (7), ajx, - x0 = Sj(a)(a - 1) x,; whence, by (3), (39), and (43), 

Sj(a) W=O (mod Q). (44) 

If a = 1, we note that W= b, and so (43) implies (44) directly. Thus (44) is true for 
all a. Therefore, either 

W=O (mod Q) (45) 

(i.e., g 2 M, including the possibility that W= 0 and g = cc ); or g < M, and 

2 M--g1 q(a). (46) 
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If (45) holds, then clearly, by (4) and (39), x1 = x0; so that 1= 1. Thus, u = 0 and 
M - g - q + 16 0 (since, by the assumption of (45), g 2 M, and, by (38), q > 1 ), so 
that (42) is satisfied. 

If, instead, g c M and (46) holds, we observe that, by Lemma 3, 2”+q-’ fi Sj(a) 
if and only if 2” ff j; whence there is an integer u > 0, such that u + q - 12 M - g 
and 2” 0 i. Thus, since the period ;1 is minimal, u will be the least non-negative 
solution of 

1=2” and u+q-l>M-g. (47) 

Clearly, this is given by (42). 1 

LEMMA 11. With g defined by (39) and (40): 

(i) if c < s + 4 then g = c; 

(ii) if c = s + d, then g > c; 

(iii) ifc>s+d, then g=s+d, 

Proof By (40) 2”+dft(~-l)xo and 2’hb. Write (~-1)x,=2”+~U and 
b = 2’V, where U and V are odd integers. By (39), there are now three cases, 
characterized as in our lemma. (i) If c <s + d, then W= ((a - 1) x0 + b 1 Q) = 

w2s+d-C U+ V} 1 Q) = 2’X,, and the factor X, is odd; so that g= c. (ii) If 
c=s+d, then W=(2’{U+V}IQ)=2’X,, and the factor X, is even, being the 
sum of two odd numbers; so that 2’+’ 1 W (that is, g > c). (iii) If c > s + d, 
then W= (2”+d(U+2C-SpdV} IQ) =2s+dXj, and the factor X, is odd; so that 
g=s+d. 1 

As we shall see later, it is not always possible to control the parity of b, but we 
can, and do, control the value of a (and thus the parity of a - 1). We naturally seek 
to make the period of the sequence as long as possible. The absolute maximum is 
clearly Q = 2”, but this cannot always be attained, Referring to Lemma 10, we see 
that both q and g should be as small as possible; and, since, by (38), q > 1, we 
stipulate that 

q= 1. (48) 

By the definition (14) of q and r, this is equivalent to a = (2r - 1) 2 - 1 = 
4(r- l)+ 1; so that 

a= 1 (mod 4). 

By the definition (40) of d, we have that, for some integer r’, 

(49) 

(50) 

(compare (14)), which implies that 

a = 1 (mod 2d). (51) 
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Now, we have (above) that a - 1 = 4(r - 1 ), so that, by (50), 

d> 2. (52) 

Conversely, by (50), if we assume (52), a - 1 = (2r’ - 1) 2d = 4r”, which implies 
(49); further, a = (2r” + 1) 2 - 1, which yields (48), by (14). 

First, let us consider what happens when b # 0. 

LEMMA 12. Under the conditions of Lemmas 10 and 11, if we impose the restric- 
tions (50) and (52) on the parameter a and suppose that b # 0, then 

(i) ifc<s+d- 1, theperiod of the sequence is 2”-C>2; 

(ii) if c = s + d, the period of the sequence is max( 1, 2”-g), where g > c + 1; 

(iii) ifc>s+d+ 1, the period of the sequence is ZMpSmd34. 

Proof. Without regard to b, we know that (50) and (52) imply q= 1. Thus, (42) 
reduces to 

A=2”, where u = max{O, M- g}; (53) 

and the three cases of Lemma 11 are the same as those of the present lemma. Now 
restrict consideration to b # 0. 

(i) Ifc<s+d-1, theng=c.By(41),sinceb#O,c<M,anditfollowsthat 
M-g=M-c> 1; so that, by (53), A=2MPCa21=2. 

(ii) If c=s+d, theng>c; and, by (53), i=max(l,2”-g). 

(iii) If c > s + d + 1, then g = s + d. Since b # 0, by (41) and our hypothesis, 
s+d<c<M, so weget that M-g=M-s-d>2;so that, by (53), A=2”-S-da 
22=4. 1 

Now we turn to the omitted case, when b = 0 and c = co. By (4) or (30), we see 
that 

xn = (a"~, I Q >. (54) 

Therefore, if x0 = 0, every x, = 0, too, so that A= 1. If, on the other hand, x0 # 0, 
so that 2” fi x0, with 0 <s < M, we can write x0 = 2’oo, where o. is odd. We see 
that (since a is odd) 2” b x, too, so that, for all n, 

x, = 2=0,, (55) 

where o, is odd. Thus, (54) reduces, on division by 2”, to 

co,= (a700~2M-X). (56) 

We are therefore led to examine the dependence on m = A4 - s of the period I, of 
the sequence [wj]i”,, with o. (and therefore all the oi) odd, when all numbers are 
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reduced modulo 2”. By (56), this problem is seen to be equivalent to that of finding 
the least n for which 

d = 1 (mod 2”). (57) 

By (51) and (52), and since, clearly, if u B u, 

X- Y (mod 2”) 3 XE Y (mod 2”); (58) 

it follows that the II,,, are nondecreasing as m -+ co, and that 

&z&c . . . =A,=l. (59) 

As a further preliminary, we need the following result. 

LEMMA 13. When a satisfies (50) and (52), the least value of n for which (57) 
holds is 2”-4 for all m > d. 

ProoJ Since I, is the least n for which (57) holds; for each m, there is an 
integer q,,,, such that 

a”” = 1 + qm 2”. (60) 

Suppose it known that II,,, = 2”-d for all d 6 m i h; by (59), this is certainly true for 
h = d. Putting 1, = 2h-d in (60), we get that a2h-d= 1 + qh2h; and, on squaring, this 
yields 

a 
2h+i-d = (a 2*-“)2=(1 +qhzh)‘= 1 +qh2’+‘+&2? 

Therefore, since h 2 d > 2 by (52), we get that 

LZ*~+‘-~E 1 (mod 2h+ ‘), (61) 

whence &, + I < 2h+ ’ -’ Further, since the 1, are nondecreasing, we get ih+ I > 
&,=2h-d. If we let X=&,+i - 2h-d, so that 0 Q X< 2h-d, then 

&h+lza X+2h-d=axa2h-d&‘(1 +qh2h). (62) 

Let ax= Y+s~~, with 0~ Yc~~. Then &+I = (Y+ ~2~)( 1 + qh2”) 3 Y + 
(Yqh+s)2h= Y+Z2h (mod2h+1 ), where Z= (Yqh+s12) is 0 or 1. Since 
aAh+1 s 1 (mod 2h+’ ) and 0 < Y < 2h, it is clearly necessary that Y = 1 and Z = 0, so 
that ax= 1 (mod 2h), whence X> 2h-d. Since we also have XG~~-‘, it follows 
that X=2h-d 9 whence A h+,&pd+p-d= 2h+‘-d. The lemma now follows by 
induction. 1 

LEMMA 14. When a satisfies (50) and (52) and b = 0, the period of the sequence 
[xi],:, is max{ 1, 2”-S-d}. 

ProoJ (i) If x0 = 0, s = cc and, as we have seen, 1= 1, agreeing with the lemma. 
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(ii) If x,#O and M-s-d<O; then 1 GM-s<d, by (41). Since m=M-s in 
(57), we get by (59) that A= A,-, = 1, again agreeing with the lemma. (iii) 
Otherwise, x0 # 0 and M-S - d > 0, and the lemma asserts that the sequence 
[xj],Fto has a period 2MPS-d. Now, the period of the sequence [xi],: o, given by 
(54), is clearly, by (55) and (56) the same as that of the sequence [oj],~, with o. 
odd. This, in turn, equals the least n for which (57) holds, when m = M-S. By 
Lemma 13, this is 2”-s-d, completing the proof of our lemma. 1 

Lemmas 12 and 14 show the general desirability of using odd values of b. Then, 
c =O, and we are in case (i) of Lemma 12, with A= 2”, the optimal situation. 
However, as we shall see later, this will not always be possible to achieve. 

It is interesting to see under what circumstances the least desirable situation 
(namely, when A= 1) occurs. We already know, by Lemma 8, that this can happen 
when a is even. Lemma 12 now tells us that, when a is odd and satisfies (50) and 
(52), and b # 0, it can only happen in case (ii), when c = s + d. Let us write 

xo=2M-19, a-1=2”-a, b=2”-f?, (63) 

where, by (50), a=2d(2U- 1) with 1~ UG~~-~-‘. Since b and x0 are in J, j?= 
2”+d(2V- 1) with 1 Q V62MP”-dP’, and 0=2”(2X-- 1) with 1 <X<2”-SP1. 
Then, by (39), 

w= (22M -2”‘(a+0--1)+a0-/I~Q). (64) 

Therefore, by (53), we get that I = 1 if and only if g >/ M, i.e., if and only if 

B = a0 (mod Q), i.e., if= 2UX- U-X+ 1 (mod 2”-“-d-‘). (65) 

Finally, Lemma 14 tells us that we can have A = 1 when b = 0, either if x0 = 0 or if 
x0 is a multiple of 2M - d. 

LEMMA 15. Zf the sequence [x,1?= o is generated by (4), with the parameter a odd, 
then, given (40), we have that 

(a) $C<OZ andc<s-1 (Vj>O) {2c+11~~jond2cflx2j+~}; 

(b) ifc=s<co (Vj>O) {2Cftxyand2”+‘Ix2j+l}; 

(c) ifc>s+l or ifc=s=co (Vj>O)2"llxj. 

Proof: For all j > 0, define the powers t j  by 

2'1 n XI. (66) 

Then, by (4), since a is odd, 29 fi ax,, and, by (40), 2’ h b. We recall that it is 
possible for b or any xi to vanish, yielding that c = co or t j  = co, respectively 
(see (13)). Using an argument exactly analogous to that used in proving Lemma 11, 
we see that (i) if b = xi = 0, then c = t j  = co, and, in fact, every x, = 0 (including 
x0 = 0; see (2) and (36)); so that s = 00 and (Vj> 0) 2” fl xi; (ii) if c < tj, then 2’ fi 
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xj+i; (iii) if c=tj, then xi+, must be an euen multiple of 2’, so that 2’+ ’ 1 xi+ i ; and 
(iv) if c > tj, then 25 t? xj+ r. Thus, 

tj>c*tj+l=c; tj=c*<j,,>c; tj<c*tj+l=tj. (67) 

But the sequence [tj],~O begins with t, = s, whence the lemma follows 
immediately. 1 

LEMMA 16. Given M>O, with Q = 2M and L = [0, Q); define the set J by (28) 
and let the sequence [xj],z, be periodic, with period I, starting at index h. Let the 
set K,, = {xi),?&, of values of the xj, once the periodicity has started, be a subset of 
J, and let the number of distinct values in it be P = IKOl = A. Then a sufficient 
condition for the sequence [x~],?=~ to be untform in J, is that there be integers a and 
p, with 0 < p < M, such that 

a,p-p and (Vj> h) 2PI(Xj--). (68) 

Proof Since the sequence [xj],To is periodic, with period 1, starting at index h; 
the sequence [x,- c1],&, offset from the first by ~1, is also periodic, with the same 
period 1, starting at the same index h, as is noted after Definition 2. That the set 
K, has just 1 distinct elements indicates that, in the period, there are no repeated 
values. Now, let K, = { (xj - a 1 Q)},?, be the set of offset periodic values, reduced 
module Q; clearly, these are also just 1 in number. If we write 

J,,=J and J,= {r2P:O<r<2M-p-l}, (69) 

then Jp is obviously the set of all integer multiples of 2p in J (and so in L). Hence, 
the total number of such multiples is 2”-p, and Jp is CES in L (by Definition 3, 
since adjacent points are 2p = (Q-0)/2”-” apart). If (68) holds, then K, is clearly 
a subset of Jp, since 2p divides every xi - a; and so, since 1= 2”-p, K, must equal 
Jp. Thus, K, is CES in L; and therefore so is the original set K,, offset from K, by 
-a, as is noted after Definition 3. Thus, by Definition 4, the sequence [xi],“,, is 
uniform in J, with coarseness Q/A. 1 

LEMMA 17. The period, ;1, of the sequence [xj],yo generated by (4) equals the 
number, P = I K,I, of distinct values in the periodic set K0 = {xj),zh. 

Proof We refer to the proof of Lemma 7. The j-i values xi, xi+ 1, 
xi+2, -*7 xi-i are all different, and thereafter the values repeat, because, by (2) or 
(4), equal predecessors in the sequence have equal immediate successors and 
because xi = xj. Thus, P = j - i. Therefore, by Lemma 4, P is a multiple of ,I. But, 
since all P values in the above list differ, A cannot be less than P, whence A = P. 1 

We now have all the facts we need to prove our main result. 

THEOREM 1. 
by 

Zf the set J is defined by (28) and the sequence [xi],: 0 is generated 
(4) with odd parameter a satisfying (50) and (52); then the sequence is untform 

581/84/l-2 
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in J, in the sense of Definition 4. When g is defined by (39) and (40), the coarseness 
of the sequence is given by 

(i) 2’, ifc<s+d-1 andc<co; 

(ii) min{2”,2g), zfc=s+dandc<oo; 

(iii) min{2”, 2s+d }, if c>s+d+l or c=s=co. 

Proof. Lemma 9 tells us that the sequence [xi],?, generated by (4) is com- 
pletely periodic, since the parameter a is odd, and Lemma 17 tells us that the 
number, P, of distinct values of xj in the period of the sequence equals its period, 
A (i.e., the period consists of Iz different values, with no repetitions). Lemma 16 gives 
sufficient conditions for the sequence to be uniform; in the present case, all of that 
lemma’s preliminaries are satisfied, with h = 0, K,, = {x~}~~, and P = IK,l = A. By 
(53) (which holds for all b (see Lemma lo)), 1 takes the form 2” with 0 <U < M, 
which translates, if we write u = M - p, into the first part, i = 2M - p, of the condi- 
tion (68) of Lemma 16. Further, Lemmas 12 and 14 specify the corresponding 
values of p, Therefore, the second part of the condition (68) which becomes 

(Vj>O) 2’1 (Xj-a), (70) 

alone remains to be verified, with the help of Lemma 15. Given that the sequence 
is indeed uniform in J, it then follows from Definition 4 that the coarseness of the 
sequence is Q/P = QfA = 2”/2M-p = 2p. 

An examination of Lemmas 12, 14, and 15 indicates that there are six cases 
to be considered. Necessary correspondences between cases are found in Table I. 
Cases (I), (II), and (III) correspond to part (i) of our theorem; Case (IV), to 
part (ii); and Cases (V) and (VI), to part (iii). 

(I) If c < cc and c < s - 1, then we have case (a) of Lemma 15: members xzj 
of the sequence [xj],YO are even multiples of 2’, and members xy + , are odd multi- 
ples of 2’; so all xi are multiples of 2’. Thus, (70) holds if we take a = 0 and apply 
p = c (from Lemma 12). The sequence is therefore uniform in J, with coarseness 2’. 

TABLE I 

Case Lemma 12 Lemma 14 Lemma 15 

c<w 

(I) CCS-1 (i) p=c<M - 

(11) C=S (i) p=c<M - 
(III) s+l<c<s+d-1 (i) p=c<M 
(IV) c=s+d<g (ii) p=min{M;g} I:; 

ciw orc=w 

(V) cas+d+ 1 (iii) p=s+d<M p=min{M,s+d} 

WI) c=s=w p=M 
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(II) If c=s< co, then we have case (b) of Lemma 15: members Xy of the 
sequence are odd multiples of 2’, and members xy+ 1 are even multiples of 2”, so 
that, again, all xi are multiples of 2’, whence, as before, since p = c, the sequence 
is uniform in J, with coarseness 2’. 

In all remaining cases, we have case (c) of Lemma 15: all the xj are odd multiples 
of 2”. Also, for all j, by Eq. (7), aj- 1 = (a- 1) Sj(a); so that, by Lemma 6, with 
Eq. (39), 

xj=(xo+(d-l)x~+Sj(a)bIQ)=(xo+Sj(a) WIQ), 

whence, for some Cj, xj - x0 = Sj(a) W+ Cj 2”, so that, by (40), 

(71) 

(Vj20) pin{gJQ 1 (xj- x0). (72) 

(III) If c < co and s + 1~ c < s + d- 1, then, again, p = c. By (39), (40), and 
(41), since c<s+d, g=ccM, whence c=min{g,M}. If we take cl=xo, (70) 
follows from (72), so that the sequence is, once again, uniform in J, with coarseness 
2’. This completes the proof of part (i) of our theorem. 

(IV) If c = s + d< co, then, by Lemma 12, p = min(M, g}, where g is defined 
by (39) and (40). Taking a = x0, we see that (70) holds, by (72), whence the 
sequence [xi],??, is uniform in J, with coarseness 2P = min{ 2”, 2g}. This proves 
part (ii) of our theorem. 

(V) If c>s+d+l, then either c<cc and p=s+d<M-2, by Lem- 
ma 12(iii); or c = cc and p = min{ M, s + d}, by Lemma 14. Thus, if p = M< s + d, 
we have 1 = 1, b = 0, and (since we are not in Case (VI); i.e., since x0 # 0) s c M, 
by (41), and 1 < M - s < d, which is possible, by (52). In this case, all the xi are 
equal, whence we see that every xi- x0 = 0, which is divisible by 2M = 2p. Thus, 
taking tl = x0, we obtain (70), so that our sequence will be uniform in J, with 
coarseness 2P=2M=min{2M, 2s+d}. 

If p = s + d-x M, on the other hand, then c may be finite or infinite. By 
Lemma 15(c), write 

xi = 2”Xj, (73) 

where every Xi is an odd number. Then, by (2), 

Xj+1saXj+2-“b (mod2”-“), 

where, by (52), M-S > d> 2 and 2-“b is divisible by 2d (by (40), since, in the 
present case, c - s > d+ 1). Hence, by (5 1) and (58), 

Xi+ 1 E Xi (mod 2d), (74) 

so that all the Xj are not only odd, but congruent to the same odd number, modulo 
2d. This means that every xi equals x0 = 2”Xo plus a multiple of 2s+d = 2p. Taking 
a = x0, we see that (70) holds; and therefore, again, the sequence [xi],?=, is uniform 
in J, with coarseness 2J’=2S+d=min{2M, 2”+d}. 
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(VI) Finally, if c = s = co, then b = x,, = 0, whence, by (2), every xj = 0; hence 
1= 1 and so p = M. By the same token, (70) holds for tl= 0; so that our sequence 
is indeed uniform in J, with coarseness Q. This completes the proof of our 
theorem. 1 

COROLLARY 1. The coarseness of the sequence [xj],T 0, defined as in Theorem 1, 
attains its minimum possible value, namely, 1, tf and only tf c = 0. 

Proof It is clear from the definitions (39) and (40) underlying Theorem 1 that 
s>O and c>O. By (50) and (52), and since aeJ, 562”+1<(2r-l)2d+1= 
a<2”, whence 

M>,3. (75) 

In case (i) of the theorem, the coarseness 2’= 1 only when c = 0, implying that 
s + d - 12 0 and thus in no way restricting the allowable values of s (since s 2 0 
anyway, and, by (52), d > 2). In case (ii), g > c + 1 = s + d + 1 and the coarseness is 
min{2”, 2g). By (75), 2M > 8; and, since s > 0, g > d + 12 3, by (52), so that 2g 2 8. 
Thus, either way, the coarseness is at least 8. In case (iii), similarly, by (75), and 
because s > 0 and da 2, the coarseness min(2”, 2”+d} is at least 4. Thus the 
absolutely best coarseness, 1, is attained when and only when c = 0 (in case (i)). 1 

COROLLARY 2. Given the set F defined in (29) and the sequence [ tj],z 0, defined 
by (1) and (2), with parameter a satisfying (50) and (52); the sequence is unzform in 
F, in the sense of Definition 4, and the coarseness of the sequence is given by the 
values in cases (i), (ii), and (iii) of Theorem 1. 

Proof Both sets, J and F, have Q members (points) and are respectively CES 
in [0, Q) and [0, 1). The sequence [xj],~, stands in the same relation to J as does 
[tj]zO to F, and the corresponding sets K, = {x~}~~ and K, = { rj}zO both have 
just A members. Thus, by Definition 4 and Theorem 1, the corollary follows. 1 

We have now collected sufficient information, on the uniformity properties of 
linear-congruential pseudo-random sequences, to enable us to move on to the main 
purpose of our study, namely, the generation and analysis of tree-structured families 
of generators. We shall discover that the results, embodied, for the most part, in 
Theorem 1 and its corollaries, which tell us about the uniformity and coarseness of 
a single sequence, suffice to analyze the properties of independence and consonance 
between members of families of such sequences. 

4. TREE-STRUCTURED FAMILIES OF GENERATORS 

We now proceed to consider tree-like branching processes. We take particle-trans- 
port problems as important and typical paradigms. The model often used has two 
kinds of random steps: those representing the rectilinear (or, in the presence of 
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force-fields, curved) particle flight across the empty space of which all materials are 
overwhelmingly composed (a statistical Poisson distribution of path length, deter- 
mined by the “mean free path,” is used to sample the distance traveled); alternating 
with steps representing “collision” events, terminating such free flights. Collision 
events include elastic or inelastic rebound collisions and various nuclear reactions, 
which often generate new particles (of matter or radiation); these last lead to a 
branching of the particle histories. The creation of “virtual particles” (used, for 
example, in the Monte Carlo “particle-splitting” technique, and in obtaining Monte 
Carlo scores at small-aperture detectors) also leads to branching. (Of course, in 
most Monte Carlo computations, all “particles” are more or less virtual !) Since 
each step in a particle history (or random walk) may typically require about 10 
random numbers, we may expect our pseudo-random sequence to entail branching 
at every Tth term, where T is of the order of 10. While it is certainly feasible to 
allow branching at every random number, it is likely to be more economical to pick 
such a T and only allow branching at every Tth step of the random sequence. The 
price we pay is that T must be an over-estimate, so as to ensure that, at least, most 
of the time, T random numbers suffice to compute a random-walk step (if more are 
needed, in a particular step, then we must allocate an integer multiple of T random 
numbers to this step). Thus, quite a few random numbers will be wasted in the 
process. 

Before we can move forward, we must consider the behavior of the sequence 
cxT- 12 x2T- 19 x3T- 19 x4T- 1, .*.I = cxjT- *Ii”= 1 corresponding to the branch points 
of the process (xi,-, is the current pseudo-random number last obtained, when T 
numbers have been generated and a branch may occur). 

LEMMA 18. The behavior of the sequence [xi,_, ],y , of branch points is given by 

xj+l=(AXj+BIQ> (76) 

when we write 

A = (4 Q>, B= (SAa)blQh xj = XjT- 1. (77) 

Proof By Lemma 6, the relation (30) holds; so that, using (5), we see that, 
modulo Q, 

x(j+ l)T- 1 -a ‘j+l’T-lxg+S~j+l)T--,(a)b 

~a(i+l)~-1Xo+(a(j+l)T-2+a(i+l)T-3+ . . . +a2+a+l)b 

zaT[ajT-1x,+(ajT-2+ajT-3+ . . . +a2+a+l)b] 

+(ar-‘+ar-2+aT-3+ . ..+a’+a+l)b 

E aT[aj’- 1 ~0 + Sj,- l(a) b] + SAa) b 

= aTxj,_ 1 + SAa) b. 

With the notations of (3) and (77) (78) takes the form (76). 1 

(78) 
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The recurrence relation (76) is exactly of the same form as (4); so that all our 
earlier analysis applies here, and Theorem 1 applies to the sequence [Xj],y=o just as 
it does to [xj],TO. By Corollary 1, we observe that odd values of B are preferable; 
clearly, by (77) and Lemma 3 (with q = 1, by (48)), B will be odd, if and only if 
both b and T are odd. It is easily seen, by (51) that 

A =aT 1 (mod 2“), (79) 

for all values of T. Henceforth, we shall revert, throughout, to the more familiar 
notation of (4), rather than that of (76); but with the understanding that an equally 
spaced subsequence [x,,- ,],z 1 of [x~],~~ may well be what we are really dealing 
with. 

The recurrence relation (4), with parameters a, b, and x0 (we take Q and M 
as fixed), generates a linear-congruential sequence [x,1,?=, of integers in J. It 
constitutes a pseudo-random generator which we may denote by 0 = G(a, b, x0). 
Having analyzed the periodic behavior and uniformity of a single linear congruen- 
tial sequence, we can now consider a pair of such sequences: (i) [x,],z,, with 
generator 0 = B(a, b, x,), characterized by (4) and (ii) [x~]~OO,~, with generator 
@+ = 6(at, bt, xi), say, characterized by 

(Vj20) x;+l= (a+x;+b+IQ). (80) 

We may now define the difference sequence [6j],??, as we did in (26), and observe 
at once that 

(Vj>O) ~j+,=(a~j+(a-a+)xjt+(b-b+)lQ). (81) 

By applying (71) to both [x~],‘?~ and [xJ],cO in (26), we get that 

6, = (4, + &(a) W- W+) W+ I Q >, (f-Q) 

where Wt = ((at - 1) xi + bt 1 Q) is the counterpart, for the generator @‘, of W, 
defined in (39). This formula is rather difficult to analyze for the period and unifor- 
mity of the difference sequence, but a particular case proves to be more tractable. 
Suppose that we restrict our consideration to at = a; then (81) becomes 

(Vj2 0) Jj+l=(a~j+(b-bt)lQ>> (83) 

which is exactly similar to (4), except that b is replaced by b = (b - bt I Q). It 
follows that all the results obtained so far (up to and including Theorem 1 and its 
corollaries) for the sequence [xj],~, apply also to the sequence [S,],“,,. It is just 
another linear-congruential sequence, whose generator may be written as 
A = Wa, 8, &J. 

All this can now be generalized to a family of generators, which we may denote 
by @,, = G(a,, b,, x,,), with parameters a,, b,, and xP,,, satisfying 

(tlj20) Xp(j+l)= <apxpj+bpIQ)* (84) 
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We restrict our consideration, by taking (VP) a, = a, and write 

B,,v= @,-&IQ> and dpvj= (x~j-xxyjIQ>. 

Then 

(85) 

It is reasonable to minimize the coarseness of each individual sequence; and, by 
Corollary 1, the absolute minimum, 1, is attainable when and only when every 
c, = 0, i.e., every b, is odd. The values of the parameters xPO and a, subject only to 
(50) and (52), are arbitrary. This means that we have at our disposal fully half of 
all possible linear-congruential sequences (altogether 2”-’ sequences) for each 
choice of x0, when a is fixed. However, this does entail that every /3,, will now be 
even. (There is no choice of more than two integers b, which will permit us to get 
all odd flrV.) 

Now let us consider the kind of branching random walk for which the present 
study is intended to provide effective pseudo-random generators. In Fig. 1, we see 
the first five levels of a binary tree with the nodes numbered in a simple, systematic 
manner. The caption explains the system. From any odd-numbered node, say 
N, = 2p + 1 (p = 0, 1,2, . ..). we define a random walk, or sequence of nodes, 

l-,=[N,-+2Np+4N,+ ... -+2”N,+ . ..I. (87) 

obtained by taking the left-slanting branch at every node (i.e., going from parent to 
left-child, every time), which will correspond, for example, in the case of a particle- 
transport problem, to a single particle-track. 

FIG. 1. Binnry tree structure. Level k has 2k nodes, numbered (boldface, next to node-circle) 2k, 
2k + 1, 2&+2, . . . . 2”+’ - 1. Children of node number n are nodes numbers 2n (on left) and 2n + 1 (on 
right). Left brunches are shown thicker; they denote continuing random walks T,, (index shown in node- 
circles; p in (88)), generated by single linear-congruential generators. 
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Associated with the walk f,,, there will be, at each node, an array or other data- 
structure, giving the properties of the corresponding event, e.g., of a collision in the 
particle history. The statistical samples occurring at every node of the random walk 
will be computed using pseudo-random numbers coming from a single generator 
of type @,, = G(a, b,, x,,), satisfying (84), with parameters xflO, b,, and ~,=a, 
satisfying (50) and (52). When an additional particle is generated at node number 
v, this will correspond to taking a right-slanting branch, to the child-node 
numbered N, = 2v + 1, where a new pseudo-random generator @, = G(a, b,, xvO), 
with parameters a, b,, and xUO, initiates a new, concurrent particle track or random 
walk, r,. 

Since it is typical that branching does not actually occur at every node (and, 
indeed, since, as has been explained in Section 1, it would be totally impossible, in 
practice, to perform the computations needed if every branch did occur), it is of 
great practical utility that the generator GV, needed on branching at node number 
v, should be identified by appeal only to the index v, or, at worst, to a small 
number of parameters computed and stored at the node v. 

Let v be a node in f,; so that, by (87), for some integer m, 

v=2”(2p+ 1) and 2” h v. (88) 

Then we may associate, with the node v, a record, 

K = V’N,, b,, q,,), (89) 

consisting of (i) the current node number, v = 2”N, (from which both m and p can 
be uniquely determined); (ii) the value of the parameter b, of the current generator 
oM (remember that the parameter a is supposed to be common to all random 
generators in this scheme, orfumi1y); and (iii) the current random number x,,. We 
now begin the new random walk r,, with new parameters, b, and x,,+ and the par- 
ticular scheme that we adopt is specified when we define the functional relationships 
between these new parameters and the record: 

b, = g(Y’N,,, b,, x,,) = W(b), 

vo = 3VmNp, b,, x,,,J = fW&). X 
(90) 

This can also be formalized by putting: 

Iw,“= (N,, b,, xvo) = 42”N,, b,, x,,,J = 4R). (91) 

The mapping .H (or, more explicitly, the functions 33 and X comprising it) deter- 
mine the particular algorithm we choose. 

Consider, first, the relationship between two segments of the same random 
sequence [xi],TO, say one beginning at x0 and the other at xH. Then we may take 

t xi =xff+j and @+ = G(u, 6, x,), (92) 
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so that, by (83) with bt = b, we see that the sequence [S,],:, defined in (26) has 
generator d = 6(a, 0, x0 -x”). 

LEMMA 19. Given the set J defined in (28 ), the sequence [xi]i”, ,, generated by (4) 
with parameter a satisfying (50) and (52), and given any positive integer H; the 
sequences [xj],~=,, and [xj],yC n (which differ only by the positional offset H) are 
independent with respect to J, in the sense of Definition 5. When c, s, d, and g are 
defined by (39) and (40), and K by 

2K,H, (93) 

the two sequences have consonance min{2”, 2K+g+d}. 

Proof: Applying Theorem 1 to the generator A, we see at once that the sequence 
[cS,],?=~ is uniform in J; and therefore, by Definition 5, we immediately conclude 
that the two sequences [xi],:, and [xi],?Y, are independent with respect to J. 
Since, by (13), 2” II 0, and the second parameter of the generator is 0, the corre- 
sponding “power of divisibility” of that parameter is co, so that, by Theorem 1, the 
coarseness of [Sj],zO is G = min{ 2 M, 2 a+- d}, where d is defined by (50) and (52) 
and CT is defined by 2” fi (x0 - xH). Hence, by Definition 5, the consonance of 
[xj],“, 0 and [xj]j”= i is G. 

Now, by (15) with (48), 2“ h S,(a); by (39) and (40), 2g I? W; and, finally, by 
(71) (x0- xHI Q) = (-S,(a) WI Q). Therefore, we see that (r = K + g; and so 
G=min{2”, 2K+g+d). 1 

Just as we stipulated, first, that the parameter a be odd, and then that it should 
satisfy (50) and (52), so as to minimize the coarseness (that is, maximize the unifor- 
mity) of the individual sequences; so we now seek to minimize the consonance G 
of a pair of sequences. To this end, we may minimize d, subject to (52) by 

d=2, (94) 

so that, by (50), this is equivalent to a = (2r’ - 1) 4 + 1= 8(r’ - 1) + 5, or 

a = 5 (mod 8). (95) 

COROLLARY 3. Under the conditions of Lemma 19, if we impose the additional 
constraint (95) and choose the parameter b to be odd; then the consogance of the two 
sequences becomes min { 2 M, 2” + ’ } . 

Proof Since (95) is equivalent to (94), direct substitution of 2 for d in the 
formula given by the lemma yields G=min{2”, 2K+g+2}. Since b is made odd, so 
that c = 0, we have c c s + 2 = s + d, by (94), whence case (i) of Lemma 11 yields 
that g = c = 0. The corollary now follows immediately. 1 
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node v, to have the least possible consonance, so we would like the offset, between 
x&n+ 1) = (ux,,+blQ) and x&o= (a+~,,,,, + bt 1 Q), to be odd. This is clearly 
equivalent to having the offset between xlun and xfi even. By an obvious extension 
of (30) we require that there be an integer n, such that 

utxp, + bt = u2”xpm + S,,(u) b (mod Q), (98) 

or, by (3) 

u+ = (u*~I Q) and b+=G,MbIQ>- (99) 

Since (99) is independent of xPm, we see that a single transformation of the form 
(97) will work in all cases. 

However, our advantage is somewhat brittle. It is physically desirable that the 
track, generated by @, and beginning at node N,, should also have small con- 
sonance with tracks beginning at nodes neighboring node 2v in the chain generated 
by Gp, i.e., corresponding to sequential (positional) offsets close to, but different 
from, 2n - 1 (with n the same as that in (99)). These offsets will be even, in about 
half the cases, and examination of the sequence of K-values in Fig. 2 indicates that, 
if we wish to avoid K 2 x0, say, we shall certainly have a near neighbor with 
rc = K~ - 1. As for more distant tracks, across the tree, these will have a variety of 
offsets, but this is hardly to be avoided. After all, we are looking at a universe of 
only 2M distinct sequences, to fill 2k-’ tracks (left-slanting branches), in a binary 
tree of height k, with 2k - 1 branch points and 2k + ’ nodes. Since a typical value of 
this k is perhaps 102-106, while a typical value of M is about 48, the capacity of 
the scheme is evidently overloaded. 

The plausible argument, that computational runs requiring some 103-10’ 
random numbers should be pretty unrelated, when taken from random segments of 
a pseudo-random sequence with period of the order of 248 z 3 x 1014, at least three 
million times longer, turns out not to be entirely valid. However, in mitigation, it 
should be pointed out that, until now, no rigorous analysis of the algorithm was 
available. 

If one nevertheless decides to adopt this scheme, the indication is strong that one 
should adopt a satisfying (95), b odd, and ut and bt satisfying (99), with values of 
n such as 11, 12, 22, 23, or 24 (for H=21, 23, 43, 45, or 47, respectively). 

We now leave Warnock’s algorithm, and return to our consideration of the more 
general relationship between two sequences, [xi],?, and [x~],~~, whose respective 
generators are @ = G(u, 6, x0) and Qit = G(u, bt, xi), and whose difference [S,],“,,,, 
with 6j=(xj-x~IQ), satisfies (83), with /?=(b-b+IQ)#O. We shall assume 
that both b and bt are odd integers, and that a satisfies (95). Following (39) and 
(40), let 



26 

and 

JOHN H.HALTON 

zy fl8, 2n,6,, 2'llf-J. (101) 

By Theorem 1 and Definition 5, we now obtain: 

THEOREM 2. Given the set J defined in (28) and the parameters a, with (95), and 
b and bt, both odd, with (b- b+lQ) #O, the sequences [xi],‘, and [x~]~OO,~, with 
generators 0 = G(a, b, x0) and @+ = G(a, bt, xi), respectively, are independent with 
respect to J. Zf 52, y, a, and z are defined as in (100) and (lOl), then the consonance 
of the sequences is given by 

(i) 2?, $?<a+ 1; 

(ii) min{2”‘, 2’) with t>y, ify=a+2; 

(iii) 2O+*, ify>a+3. 

Proof. By (83) and (95), which implies (94), we have the conditions of 
Theorem 1, with d = 2, and Q, y, e, and z respectively taking the places of W, c, s, 
and g. By our assumptions, 

ldy<M, (102) 

whence the case of y = 0 = co is impossible and M > y > 0 + 2 (compare Lemma 12). 
Theorem 2 follows immediately. [ 

COROLLARY 4. Under the conditions of Theorem 2, if 6, =x0- xi =O, then the 
consonance of the sequences is 2)‘. 

Proof: If 6,= 0, then, by (101) with (13) CJ = co. Thus, by (102), we are in 
case (i) of Theorem 2. The corollary is immediate. 1 

It is instructive to note the dependence on u, for any given y, of the consonance 
determined by Theorem 2. This is sketched in Fig. 3. 

In the general situation described by (84k(91), a family of generators or, with 
a single common parameter a, satisfying (95), and with all their individual 
parameters b, odd, is matched to the odd-numbered nodes N,, and left-slanting 
random walks r, of a binary tree. We seek, as ever, to minimize the consonance 
between the sequences generated by the different @,, and especially between those 
sequences close to each other in the tree. The closest physical relationship will be 
between the sequences originating at the two child-nodes of any given node. For 
example, if the parent node is numbered v, the sequences are [x,1,2,+ i = 
CXp(i+m+l)lim_O~ beginning at node 2v, and [xUj]jm_ 0, beginning at node 
2v + 1 = N,. If, in Theorem 2, we take 

xj=x~(m+j+l)~ b=b,, x;=xvj, b+ = b,, (103) 
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p = logzconsonance 

m 
M, 

, 

T  
y<r<M 

Y+l 
Y  

Y-l P’Y 

2 

0 y-3 y-l 
>Cr 

FIG. 3. Consonance as a function of 0, for fixed y. The logarithm to base 2 of the consonance of 
two sequences, [x,],“,, and [x:],?&, with generators @ = G(a, b, x0) and @+ = G(a, bt, xf), respectively, 
is plotted against D (where 2”fi S, = (x0-xX) Q)), for given y  (where 2? fi B = (b - bt 1 Q) #O). Cases 
indicated are those used for classification of results in Theorem 2. 

so that 

and 

then the conditions of the theorem are satisfied and the conclusions of the theorem 
hold, for all indices v and functions 93 and ?X. 

Let us write 

A ph = lx Am + h) -x,oIQ) (106) 

(the notation makes sense, since, by (88), p and v determine m). Then we note, by 
(105), that, in particular, 

60 = A/w). (107) 

We shall denote the logarithmic consonance (i.e., the logarithm to base 2 of the 
consonance) of our two sequences by prv,. 

COROLLARY 5. IfA,,, is odd, then the logarithmic consonance of the sequences 
CX~(i+m+lJliOO,O and [xvi],? O is given by 
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0) ppll=ll) ifr=l; 
(ii) 2<p,,,dM, ify=2; 

(iii) pPyL=2, ify>3; 

where y is defined by (101). 

Proof: If dPYl is odd, then Q = 0, and, by (102), the three cases of Theorem 2 
become those above, whence the values of pPVI are as stated. 1 

This result suggests that we should take dry, odd and 

y>3; (108) 

the latter condition is easily satisfied, e.g., by taking every b, E 1 (mod 8). Note 
that, if dMVI is even and not zero, it is much harder to confine the values of pPVl. 

Now consider, as we did for Warnock’s scheme, what happens if we compare the 
sequences C~,ci+m+H,li”=o and [x~~],??~ with a positional offset in one sequence. 
Then p (and therefore also y) is unaffected, but 6,, (and therefore also Sz, cr, and t) 
will depend on H, since now 

b= (X~(m+H)-X”OIe>=AllYH. (109) 

Theorem 2 will clearly still apply. For different values of H, the logarithmic 
consonance of our two sequences, which is denoted by p,,““, will depend on 0 as 
shown in Fig. 3, with an isolated maximum-value “spike” when rr = y - 2 and 
Y<Pp”Hl < M. The dependence of 0 on H will be scattered, rather as in Fig. 2; as for 
Warnock’s algorithm, this creates a problem. 

By (71) and (106), we see that 

where 

wpm= ((a- l,x,,+b,IQ> (111) 

is analogous to W in (39). Thus, by (110) with h = 1, 

A ,ml = (A,, + S,(a) W,, I Q>. (112) 

Since, by (111) with (49) and because all the b, are odd in our present discussion, 
W,, is odd. Since, also, S,(a) = 1, we see that 

Apvl is odd if and only if A,, is even. (113) 

Further, by (93), (48), and Lemma 3, we have that 2” A S,(a) W,,. Now, let us 
write 

2Qvh h A,,,+,. (114) 
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TABLE II 

Region Case in (115) Case in Theorem 2 P)lYH 

“1” 
“ 0 2 
“ 7, 3 

T, 
T2 

T3 
D 

(a) 
(cl 

(a), (bh (~1 

1:; 

(b) 
(b) 

(iii) 
(iii) 
(i) 

(ii) 
(ii) 

Indeterminate 
6) 

yJJ2 

Y 

P’Y 

P’Y 
? 
Y 

Then, our usual line of argument (see, e.g., Lemmas 11 and 12), applied to (110) 
with h = H, yields that: 

(a) 
@I 

(cl 

if c po < K; 
if oPti= K; 

if (T /,vo ’ K. 

Tl m  y= r+2< oPvo+2 I(+ 2 > a,,, + 2< y 

T ,  WA y= uwd+2< x+2 a,,,+2>x+2< y 

3 
K + 2 = DP”O + 2 < y lr+2>ycag*+2 

(115) 

FIG. 4. Logarithmic Consonance as a Function of up,,,, K, and y. The numbered solid regions, “1,” 
“2,” and “3,” are pyramidal portions of the cube, bounded by faces of the cube and by triangular plane 
regions shaded otherwise than their own shading key and lying opposite to the similarly shaded 
triangles: region “1” is bounded by T2 and TX and lies opposite to T,; region “2” is bounded by T., 
and T, and lies opposite to T,; and region “3” is bounded by T, and T2 and lies opposite to T,. The 
resulting values of the logarithmic consonance p,,“,, are given in Table II. 
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Using Fig. 4 as a guide it is not too hard to derive, from (115) and Theorem 2 with 
a = apVH? the relationships shown in Table II. Here, D denotes the diameter of the 
cube bounded by coordinates 0 and A4 - 1, in which the triangles T, , T2, and T3 
meet. 

THEOREM 3. Define y by (lOl), K by (93), A,,vh by (106), and apvh by (114), and 

let Arvl be odd (i.e., apv, = 0). Then A,,, is even; and, if a clear minimum occurs (i.e., 
one of aGVO + 2, K + 2, and y, is st;ictly smaller than the other two), then 

P ~“H=min{a,,,+2,Ic+2,y}. (116) 

Proof. The first conclusion of the theorem, that ArvO is even, follows at once 
from (113), since Apvl is postulated to be odd. The result (116) follows immediately 
from Table II and the information in Fig. 4, where we see that a “clear minimum” 
occurs precisely when we are in the interior of one of the regions “1,” “2,” 
or “3.” 1 

Since, by Theorem 3 and (114), aPVO > 0; when H= 1 (so that K = 0), aPVO > K; 
whence plrVl =y if y<~+2=2, and pllVl =~+2=2 if y>~+2=2. Thus we 
recover cases (i) and (iii) of Corollary 5. 

We can, to some extent, control the values of y and of aPyo, but we have no 
control over rc, since H is a variable. Table III (based on Fig. 4 and Table II) shows 
the dependence of plrvH on all three parameters, for all their possible relative 
magnitudes. The “bad” (high-consonance) cases arise in the triangular plane 
regions T1, Tz, and T), and the least damage is done if bad values of H are as few 
as possible. Note that half the values of H are odd (K = 0), a quarter are divisible 
by 2 but not by 4 (K = l), an eight are divisible by 4 but not by 8 (K = 2), etc., with 

TABLE III 

upuo + 2 and y K Region PJNH 

~,dJf2<Y K+2<U,,,+2 
“ 3. 

2 

K+2=U,,,+2 T3 
U,,+2<K+2<y “1” 

K+2=y “ 1” 
u+2>y “ 1” 

u,,+2=y u+2<y “2” 

K+2=y D 

K+2>Y T2 

~,,+2’Y K+2<y “2” 

K+2=y T, 
y < K + 2 < ulcvo + 2 “3” 

K+2=U,,,+2 “3" 

K+2>U,,,+2 "3" 

K+2 

? 

UP,-+2 
0,,+2 
0,,+2 

K+2 

Y 

P'Y 

Kf2 

P'Y 

Y 

Y 

Y 
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the value rc = q, say, accounting for a fraction 2 - q - ’ of all values of H and with all 
values of K > q accounting for the sume fraction. Thus, if crpVO + 2 > y, the fraction 
of bad H-values (in T,: K =y - 2) is 2P’+‘; if olrvo + 2 = y, the fraction (in T,: 
lc>y-2) is again 2-?+‘; and, if a,,,+2<y, the fraction (in T3: K=Q,~) is 
2P”fi*P I. We therefore see that it is desirable to take d,,r odd (cPV, = 0) and y > 3 
(as noted in (108)) and 

a,,>?-2. (117) 

Since the fraction of “bad” values of H is then 2?‘+ ‘, it is probably wise to exceed 
the criterion in (108) somewhat, to make this fraction smaller. A reasonable condi- 
tion might be 

Y 2 8, (118) 

yielding a fraction 2-’ (less than 1%) of bad values of H. This is achieved, for 
example, by taking every 6, = 1 (mod 256). As the lower bound on y increases, (a) 
the “good” values of H yield somewhat less desirable consonances and (b) the num- 
bers of available distinct values of b, and of x~,, decrease correspondingly, so there 
is a trade-off here, as in so many such situations, and an “engineering solution” (i.e., 
a compromise) is indicated. 

Note the special solution, when 

A PO = 0; i.e., aPVo = cc. (119) 

Then, as is pointed out in Corollary 4, we have pPcV,, = y for all H, but at the cost 
of no choice of aPyo and so of xpo. 

We must not overemphasize the importance of the consonances of positionally 
offset pairs of sequences. The unfortunate results can, to some extent, be minimized 
by suitably avoiding unfavorable offsets, but only at the cost of wasting some 
random numbers which might otherwise be put to use. Again, suitable compromises 
are indicated. 

Finally, we consider the consonance between sequences not arising from the same 
branch point. Of course, Theorem 2 still applies. Let @,, and @, begin at nodes 
numbered N, = 2~ + 1 and N, = 2v + 1, respectively, but now without the relation 
(88). Then the level, m, of N,, is given by 

2m-1<p<2m-1; i.e., m = riog,(p + 1 )I, (120) 

and the level, n, of N, will be determined similarly. Now, /I and y will still be 
defined by (101) and (104); but the appropriate 6, (see (26)) will now be 

~O=xp(k-m)-&(k-n), where k = max{m, n}. (121) 

Whatever condition we apply to all the b,, to ensure (108) or (118), will still help 
us here, but all the x,,~ will already have been fixed (as discussed above) in a way 

581/84/l-3 
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that will not likely help us here. The new 6, and G will thus be out of our control, 
whence the consonance 2p of Qp and @, will float freely, in accordance with 
Theorem 2 and Fig. 3, with p < y, except for the “bad” cases, when 0 = y - 2. As 
before, this will tend to occur about 2-)‘+’ of the time. 

5. SPECIFIC PROCEDURES 

We now have all the underlying machinery that we shall need, to select specific 
procedures, to generate tree-structured families of linear congruential pseudo- 
random generators, yielding sequences which are individually uniform, with 
minimal coarseness, and which are mutually independent, with acceptably low 
consonances. 

To put things in perspective, we observe that, for a given fixed choice of the 
parameter a (which we have supposed to satisfy (95)), there are 2”-3 distinct 
possible values of the b, satisfying (108) (or 2“‘-* distinct values satisfying (118)), 
and altogether 2M distinct possible values of the x,,~. The possible distinct pseudo- 
random sequences are thus in any case no more than 22M-3 in number; and 
probably less, in any given procedure (e.g., in Warnock’s algorithm, there are only 
at most 2M distinct sequences). Since the sequences begin at all the odd-numbered 
nodes (numbered N, = 2~ + 1) of a binary tree (see Fig. 1 ), it is clear that there 
must be at least one repetition in the first 2M - 1 levels, and thereafter, more and 
more frequently within each level (since Level 2M - 2 alone has 22Mp2 nodes, and 
so 2 2M - 3 odd-numbered nodes; and each level has twice as many nodes as its 
immediate predecessor). We thus cannot expect to avoid the recurrence of the same 
pseudo-random sequences at scattered points in our binary tree. (Even if we were 
to exploit every possible sequence of the form (4) in our tree, there would still have 
to be at least one repetition in the first 3M + 2 levels.) In practice, it is extremely 
difficult to avoid the occurrence of repetitions somewhat more frequent than these 
extreme bounds. However, we must recall that the nodes of our binary tree 
correspond to batches of T consecutive pseudo-random numbers (see Lemma 18), 
one of which usually suffices to generate a single physical event. These events will 
rarely lead to actual branching (or, as has been pointed out, the resulting computa- 
tions would be enormously, impossibly, too laborious). Thus only a very sparse, 
random sample of the branches is actually exploited in any realistic calculation. 
This is what saves us, in practice. Nevertheless, any repetitions that do occur must 
be minimized with respect to quantity and dispersed as far as possible in their 
distribution over the tree. 

Perhaps the simplest hypothesis to adopt would be that 

x,o==&“‘N,, b,, x,,m)=x,,m. (122) 

This is comparable in economy to Warnock’s definition of $?&, in (96), and is 
equivalent, of course, by (106), to (119). 

Note that all the parameters b, are postulated to be odd, with (108) holding, 
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which we can ensure by choosing, once and for all, any odd value b,, = 28 + 1 and 
then taking 

(Vv>O) b,, = b, (mod 8). (123) 

Since every starting node of a new generator @, has an odd number, N, = 2v + 1, 
with all the v different, of course, it is natural to adopt the simple relation 

b,,=~~,3(2mNp,bl,,xlrm)= <8v+b,lQ>. (124) 

As a slight generalization, we may consider 

bv = %,,(2”N,, b,, x/m) = (2bv + bO( Q), (125) 

where 

b,=(20+1/2”) (126) 

and (see (75) and (108)) 

M>f#>3. (127) 

Since b, -b, E J+ (see (69)), we see that there will be exactly 2”-b distinct values 
of b, satisfying (125). Obviously, for (125), 

B,, = (2% - v) I Q >, (128) 

whence y > 4. This result would indicate that, in fact, (124), with $ = 3, is the best 
choice, though the considerations leading to (118) would suggest something closer 
to 4 = 8, instead. 

Observe that, while Warnock has a single generator family, identified by the 
parameters (a, b) for all left-slanting sequences (see (96)), and generates xVO from 
X~ by means of another single generator (at, bt), we propose to have the b, 
specified from the index v by a formula (see (125)) and xti equal to the parent 
value xlun. 

If the parameters a, b,, and b, satisfy (95) and (123), and we make A,,,,,= 
(Xpm - xVO 1 Q) euen, then, by (108) and (113), Corollary S(iii) applies and the 
consonance between “parallel” sequences, [x,,(~ + m + ,,I p”= ,,, beginning at node 2v = 
2”+‘(2~+ I), and [xVj],FO, beginning at node 2v+ 1, will be 2p~VL=22=4, which 
is just tine. 

If we adopt the simple algorithm embodied by (122), then the node record R, (see 
(89)) suffices to carry all the necessary information at every node, for initializing a 
right-slanting branch whenever needed. 

ALGORITHM 1. The procedure carries at each node, numbered v = 2”N, = 



and 

2v+1=2”+‘NP+1 

4&c) = (b-value at N,) = b, 

X VO 

}+[Ysr~;l}. (131) 

34 JOHNH.HALTON 

2”(2~ + 1 ), a record R, = (2”N,, b,, x,,~), the transformation for which, on passage 
to the two child-nodes is given by 

4” = =%,,(W 

These mappings are defined by 

h, 1 = RN”= -J&,,(R). (129) 

This agrees with (122) and (125). Thus, xv0 = XS(R,) and b, = 9$,&R,). 

However, as has been borne out by some ingeniously contrived, but realistically 
possible, simulations performed by T. E. Booth (private communication), there can 
well occur many identical replications of sequences. This undesirable situation may 
not show up, because of the extreme sparseness of the subtree actually occurring in 
any practical computation; but the possibility nevertheless remains and presents a 
serious, lurking threat. It is to reduce this risk that Algorithm 2 is developed below. 

We have seen that, for a fixed value of the parameter a, there are at the very most 
2 2M-3 distinct linear-congruential sequences, so that a repetition must occur within 
at most 2M- 1 levels. We now seek to construct a scheme which will guarantee the 
absence of all repetitions for as many levels as possible. 

The class of generation schemes which we shall henceforth consider has b-values 
determined by (125) with a suitable choice of 4 satisfying (127). A b-value will be 
said to originate (or to have its origin) at an odd-numbered node; thereafter, it will 
apply to all the (even-numbered) left-slanting descendants of this node. 

DEFINITION 6. Given a binary tree (see Fig. 1) associated with a family { ar = 
G(a, b,, xPo): p = 0, 1,2, . . . > of linear-congruential generators (with fixed parameter 
a satisfying (95), and all the b, odd and satisfying (125) for fixed $), we define the 
first k + 1 levels of the tree (i.e., levels 0 through k) to be the k-body of the tree and 
we denote it by Bk. In particular, we define the (M - 4)-body of the tree (i.e., the 
first M - C$ + 1 levels of the tree, levels 0 through M - 4) to be the apex of the tree 
and we denote it by B,-,= A,. 

LEMMA 20. Any particular b-value, say b*, will occur at intervals of length 2MPm 
in the index v (this correspond to intervals of length 2M - 4 + ’ + 1 in the node-number 
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2v + 1) and will therefore originate once and only once in the apex A, of the binary 
tree specified in Definition 6. For any 

k>M-4, (132) 

the k-body Bk of the tree will contain exactly 2k-M+m origins of the b-value b*, with 
one origination in the apex, one in level M- 4 + 1, two in level M- 4 + 2, four in 
level A4 - 4 + 3, ,.., and 2k--M+b--1 in levelk. 

Proof By (85) and (128) (which is a consequence of (125)), whatever odd 
b-value b, (see (126)) we choose for the root of the tree, every BPV = (b, -b, 1 Q) = 
(2”(~-- v)l Q), and, therefore, 6, = b, if and only if 2”-4 fi (p-v), so that any 
b-value b* repeats at intervals of length 2”-4 in the index v. Since the indices 
occurring in the apex A, of the tree are 0, 1,2, . . . . 2”-4 - 1 (2”-” consecutive, 
distinct values corresponding to the consecutive odd node-numbers, 1, 3, 5, . . . . 
2”-*+1 - l), these indices are all less than 2”-4 apart; and therefore no b-value 
can originate twice in the apex. Since there are, altogether, 2”-4 possible b-values 
satisfying (125), each possible value must originate just once in A,. 

Figure 1 illustrates the fact that, for any h > 0, level h of a binary tree contains 
2h consecutively numbered nodes, half of which, 2h- ‘, are odd-numbered. There- 
fore, the k-body Bk of the tree will contain 2kf1 - 1 consecutively numbered nodes, 
2k - 1 of them even-numbered and 2k of them odd-numbered, the latter corre- 
sponding to indices 0, 1, 2, . . . . 2k - 1. Since we have just shown that each possible 
b-value b* originates at intervals of just 2”-” in the index, it follows that each b* 
will originate just once in the apex, exactly 2h--M+4- ’ times in level h (for 
h=M-b+l, M-4+2, M-4+3,..., k); just 2kPM+B times, altogether, in the 
k-body of the tree. 1 

We shall henceforth further restrict the class of generation schemes considered to 
those in which, at any odd-numbered node N,, first the b-value b* is determined 
by (125), then a tentative initial x-value x,* is obtained in some computationally 
efficient way; its parity is compared with that of the x-value x,, at the parent-node 
v, and, only tf the parities differ, xz is replaced by its successor (ax,* + b*) Q) in 
the sequence, to yield the actual initial x-value xti. Thus we impose the parity 
condition, that dP,,, should be even (see (106), (113), and Corollary 5). 

DEFINITION 7. If we select an a EJ satisfying (95), an odd bO EJ, an integer 
fO E J, an integer 4 satisfying (127), an integer $ such that 4 < $6 M, and a non- 
negative index v, we can uniquely define (see (125); use rc/ > d in (135)) 

vg= (v12M-d), s=(v-vv,)/2M-“; (133) 

whence 

(134) 
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x*=(2~v+f,IQ)=(2'%,+folQ). (135) 

(Note that b* and x* are clearly functions only of vO, not of s.) Then the sequence 
Cxi*li”=o, with generator CD* = G(a, b*, x*) will be called the muster sequence 
belonging to b*. 

LEMMA 21. Any sequence [xi],:,, with parameters (a, b*) and initial x-value x0, 
i.e., with generator @ = G(a, b*, x,,), will be a displacement, along its length, of the 
master sequence belonging to the given b*. 

Proof: Since a satisfies (95) and b* is odd, we are in case (i) of Lemma 12 
(c = 0, by (40), d> 2, by (52), and s 2 0, by (41)), so that the master sequence (all 
of whose members are in .I, by (4) and (28)) has period Q. By Lemma 17, this 
means that the master sequence runs through exactly Q distinct values. Since every 
x0 E J, whose cardinality is IJj = Q also, it follows that all these x0 are members of 
the master sequence. Therefore any generator @ generates the master sequence, 
displaced to the member x0 as its starting point. 1 

LJeIM-$++3 rrg =3J 

FlG. 5. Sequences with a common b-value. Analysis of x-value counts in sequences (left-slanting 

chains) arising from the same b-value b*, down to level k. The b-value repeats every 2Mmm index-values; 
so it originates once in the “apex,” once in level M - 4 + 1, twice in level M - ( + 2, and so on. r, is 
the cumulative number of nodes to he skipped, in the “master sequence,” beginning at node 2v,+ 1 in 
the apex, to the beginning of the sth sequence, at node 2v, + 1 = 2v, + 1 + ~2”~~. The s-values are given 
in the circles representing the initial nodes. 
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LEMMA 22. For each possible odd value b* given by (134), the total number of 
x-values generated in all the sequences occurring in the k-body B,, with parameters 
(a, b*), does not exceed 

Zk=M-+2+3x2k-M++ (136) 

Proof The situation is illustrated in Fig. 5. By Lemma 20, the value b* will 
originate just once, with some index v,,c~~-&, in the apex A,, at some level 
ranging from 0 to A4 - 4. The tentative initial x-value xy* will then be computed, 
and the parity check may yield a skip-forward in the master sequence, except if we 
are at the root (when v = 0), for then no check is necessary or possible, and there- 
fore no such parity skip can occur. If the resulting sequence originates at Level h 
(0 < h < M- 4, since we are in the apex), it will generate exactly (k - h + 1) 
x-values, one at each level of the k-body B,, beginning with Level h; so the number 
of x-values needed by this sequence will not exceed k + 1 (it will be k-h + 1 = 
k+l, ifh=O; and at most k-h+2<k+l, ifh>l). 

The single sequence which, Lemma 20 tells us, will originate in Level M- 4 + 1 
with the b-value b*, will similarly generate no more than (k - A4 + 4 + 1) x-values, 
allowing for a possible parity skip; the two sequences originating in level A4 - 4 + 2 
will, together, generate no more than 2(k - M+ 4) x-values, since they start one 
level lower; and so on. Thus, the total number of x-values generated in levels 0 
through k, by sequences having the b-value b* will not exceed 

Z,=k+l+(k-M+$+1)+2(k-M+#)+4(k-M+d-1) 

+ . . . +2h-M+)--l(k-h+2)+ . . . +2k-M++-lX2 

=(k+1},+[2(k-M+d+l) -{k-M+d+ l)i] 

+ [4(k-M+$) -2(k-M+d)] 

+ [8(k-M+#-1) -4(k-M+d-l)] 

+ . . . 

+ [{2k-M+b x 2}* 

The middle expression above partially “telescopes” (excepting the terms in { ... >, 
which are combined according to the small subscripts attached thereto) to yield 

z,={h’f-fj},+2+4+8+ . . . +2k--+‘--+{2k--++)+1}2 

which is (136). 1 

Let us write 

M’=M-(25 and k’=k-M’=k-M+4; (137) 
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then (127) and (132) become 

423, M’ 2 0, k’zz 1; (138) 

and (136) becomes 

Z,=M’-2+3~2~‘. (139) 

Lemma 21 tells us that all sequences of x-values with parameters Q and b* will 
be displacements of the (a, b*) master sequence. Such sequences will intersect Bk (in 
the sense that each node of B, carries an x-value) in segments (i.e., continuous 
sequential pieces) of this master sequence. In order to avoid repetitions of x-values 
in these segments, it well be necessary, for all of them to be disjoint, so that, for 
each fixed value of b*, all Z, x-values counted in Lemma 22 will have to be 
different. Of course, this cannot be done for arbitrarily large k, so we shall have to 
find an upper bound on k for which a solution exists. As was argued in the proof 
of Lemma 21, any master sequence has just Q = 2M x-values in it, and Q is the total 
number of possible x-values, by (28). Thus, for feasibility, we require that 

z, < 2M; 

by (137) and (139), this means that 

M’-2+3~2~‘<2~‘+4. 

(140) 

(141) 

LEMMA 23. Subject to the condition (138), the inequality (141) is satisfied if and 
only if 

k’<M’+#-2. (142) 

Proof. Note that, by (138), M’ + (4 - 2 2 1 and k’ 2 1, so that it is possible for 
both (138) and (142) to hold true. 

Now consider the inequality 

M’-2<2”‘+‘. (143) 

It is certainly true when 0 GM’ < 2 (since the left-hand side is then negative or 
zero, while the right-hand side is positive). Suppose, therefore, that (143) holds for 
M’=taO (so that 2’+‘>2’>1), i.e., t-2<2’+‘; then 

(t+l)-2=(t-2)+1<2’+‘+1<2’+‘+2’+‘=2”+”+’. 

That is, (143) holds for M’ = t + 1; and so, by induction on t, (143) is proved for 
all M’. Since, by (138), 4 - 2 2 1, it follows from (143) that 

M’-2<pf’+d-=. (14) 
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If (142) holds, then, by (144), 

39 

which is the required inequality (141). 
Contrariwise, if (142) does not hold, then, since we are dealing in integers, 

k’2M’+4-1. (145) 

Now consider the inequality 

2-M1<2M’+2. (146) 

It is certainly true whenever M’> 2 (since the left-hand side is then negative or 
zero, while the right-hand side is positive). Since, by (138), M’> 0, this leaves 
M’=O, when (146) is 2 c 22, and M’= 1, when it is 1~2~. Thus, (146) is true for 
all M’ 2 0. Now, by (138), 4 - 12 2, so by (145) and (146) 

M’-2+3~2~‘~(M’-2+2~‘+(-~)+2~2~‘+~-~ 

~(M’-2+2M’+2)+2x2M’+Q-l 

>2x2M’+4-1=2M’+4 
3 

which contradicts (141). This completes the proof of the lemma. 1 

The inequalities (138) and (142) are illustrated in Fig. 6. Since we seek to 
maximize the height k of the k-body B,, so as to have as many segments as possible 

k’ 
, 

12 3 4 5 6 7 3' 

FIG. 6. Graph of allowed (M’, k’) region. M’ = M - 4 and k’ = k - M + ( satisfy the inequalities 
(138) and (142). This makes allowable the region shaded in the figure. Since M and ( are given first and 
we seek the greatest possible k, it is clear that the sloping line, k’ = M’ + 4 - 2, or k = 2M - Q - 2, yields 
the best value of k. 
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disjoint, and for the greatest possible length, with given A4 and 4, it is clear from 
Lemma 23 that we must maximize k’ by selecting 

k’=M’+qS-2, i.e., k = 2A4 - 4 - 2. (147) 

For any index v occurring in Bk, the node N,, is, by (133), in the apex A, (see 
proof of Lemma 20). The b-value b, = b*, given by (134), will originate at the odd- 
numbered nodes N,, with indices denoted by 

vg, V1=Vg+2M-b, v,=v,+2x2Mp”, . ..) Vt=vO+tX2M-(,...; (148) 

and, in particular, by (133), v = v,. Node N,, will be in A,, for t = 0; in level 
M-4+ 1, for t= 1; in level M-4+2, for t=2 and 3; and so on. This node will 
be in level h, if h > M- 4, for 

t=2h-M+&1 
3 

2hLM+&l+ 1 9 2h-M+&l+2 
) . ..) 2h-M+4- 1. 

If v<2MP6 (s=O), the node N,=N,$ will be in A,, * otherwise, it will be in level h, 
with h>M-4, if 

(149) 

We can express the index v in binary notation as 

v={B~-~...BM-)BM--~-~...B~}, (150) 

where the Bj are the uniquely determined bits of v (binary digits, taking the value 
0 or 1) given by 

(151) 

Here, “L . . . _I” denotes the “floor” function (the integer intimum), just as “r ... J” 
denotes the “roof” function (the integer supremum). For example, L17 J = 
r171= 17, but L28.3 J = 28 and l-28.31 = 29. Since there are just 2k odd-numbered 
nodes (indexed from 0 through 2k - 1) in levels 0 through k, the k bits shown in 
(150) suffice for any index occurring in the k-body B,. 

By (133), s= (Bk--l...B,,M--d}; and 

where 

v~={BM_~_,...B,}=(YB,-~-,...B,}, (152) 

Y=B M-d-1. (153) 

Define n, by 

n, = 0 if s = 0, 
y-1 <s<2”3 if sa 1. (154) 
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Then, clearly, n, is the number of signzjkant bits in s; that is, 

B k-l= “’ = B M-qs+n, =o and B,,.--O+n,--l = 1; 

and so 

s={O 0 ... 0 1 BMur+,s-2...B M-4 1. (155) 

Observe that, if s> 0 (i.e., if node N, is not in A,, or, equivalently, v > 2”-“), 
then, for any node N, in level h > M - 4 (compare (149) with (154)), 

n,=h-M+d>O. (156) 

In other words, all nodes NY3 with given n, > 0 (and varying v0 and S) are in the 
same level, h,, and 

ifn,>O then h,=M-d+n,. (157) 

If we pass from the parent-node, numbered v, to its left and right child-nodes, 
numbered 2v and N, = N,$ = 2v + 1, the node numbers change from 

(0 ... 0 0 1 BM-r+n,~z...BM-, + Y B,p++,...B,} 

into (0 ... 0 1 B,,.--)+n,--2...BMpI Y + B,-d-,...B, 0 } (158) 

and (0 ... 0 1 B,,,M4+,,--Z...B,,,M--) Y + Bw-4-2...B, 1 }, 

where the diamond (+ ) marks the separation between the bits of s and those of vO. 
Therefore, if the node N, is in the apex (S = 0) and if, further, Y = B,.,_ 1 = 0, 
then the nodes NzV and Nz,+ i are also in the apex, and neither s nor n, will change; 
while, if the nodes N,, and NZY+ 1 are not in the apex (s=O and Y = 1, or .ra 1; i.e., 
v>2“‘-#-‘), th en n, will increase by just 1 and s will become 2s + Y. If we denote 
th: values of s and n, for NZY by s’ and n,,, and for Nzv + , by s” and nsSPr then 

s’ = S” = 2s + Y; 

{ 

n* + y, if s=O; - nd=+- n,+ 1, if ~21. 

(159) 

When we wish to branch to the right, it is a practical necessity to do so without 
information about the many previous pseudo-random numbers generated in the 
current calculation. In the proof of Lemma 22, we determined an upper bound for 
the maximum number of x-values that may need to be computed for each of the 
segments, of the master sequence belonging to any selected b-value b*, occuring in 
the k-body B, as parts of sequences with parameters (a, b*). We use this informa- 
tion to guarantee the disjointness of all these segments. To go to a right branch 
from a node v, we shall proceed as follows: 
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1. Carry, in the current node-record, or quickly compute, v,,, S, b*, and x* 
(see (133k(135)). 

2. Compute the tentative initial x-value x, , * by its displacement T, from the 
initial x-value x* along the master sequence. Use the notation (similar to (77)) 

A,= <aTslQ>, S, = <STz(a) I QL B,= (S,b*lQ), (160) 

and apply (30) to yield that 

x: = (A,x* + B,( Q). (161) 

3. Carry, in the node record, the current x-value xPm. 

4. Compare the parities of xcun and x,?; if they are the same, take the initial 
x-value of the new sequence to be x v. = xt; if the parities differ, take xVO = 
(ax,* + b* I Q). 

Following the proof of Lemma 22, we choose the displacements T, in such a 
manner as to allow enough space, along the master sequence, for the maximum 

TABLE IV 

Level of N, Level of N,+, Displacement 
(current node) (next node) increment 

s n, minus M - 4 minus M - fj (T,+,-a 

0 0 in apex 1 kfl 

2 k-M+d+l 1 1 1 

2 k-M+4 
3 k-M+4 

k-M+&1 
k-M+#-1 
k-M+#-1 

k-M+&1 

k-M++2 
k-Mi-d-2 
k-M+4-2 
k-M+4-2 

k-M+#-2 
k-h4+4--2 
k-M+&2 

k-M++2 

8 
9 

10 
11 
12 
13 
14 
15 

16 
17 
17 
18 

k-M+#-3 
k-M+d-3 
k-M+d-3 

k-M+qS-3 
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number of x-values that may be needed by the segments of sequences originating 
at earlier nodes (N,,,, N,, , Nqr . . . . NYI--I). The situation is sketched in Fig. 5, and the 
results are tabulated in Table IV. As the simplest choice, we take 

To = 0, i.e., x$ =x*. (162) 

We see from Table IV that the rule, for s B 1, is 

T s+l-Ts=k-M+d+2-n,, (163) 

with n, defined in (154). For k optimal (see (147)), this gives that 

T *+, - T,=M-n,, (164) 

whence,fors>2, since T,=k+1=2M-4-1, 

S-l 

Ts=Tl+ c CT,+,- T,)= T, + i (M-n,)-M+n, 
r=l r=l 

=(s+l)M+n,-4-l- c n,. (165) 
r=l 

We observe that, for any integer n > 0, n, = n, when r = 2”-l, 2”- 1 + 1, 2”-’ + 2, . . . . 
2” - 1 (i.e., for 2”-’ consecutive values of r). Thus, 

&,=1+2~2+2~~3+2’~4+ ... +2”SP2(n,- l)+n,(s+ 1 -2”JP1) 
,=I 

= 2 xl -1 xl 

+22 x2 -2 x2 

+23 x3 -22 x3 

+24 x4 -23 x4 

+ . . . 

+{2”~-‘(n,-1)},-2”~-~(n,-1)+(n,(s+1-2”~~’)}, 

=(2”~~‘(n,-1)},+{n,(s+1-2”~~‘)},-{1+2+2~+ .*. +2”*-2} 

=n,(s+l)-{1+2+22+ ... +2@}=n,(s+1)-2++1, 

where, again, we have taken advantage of the “telescoping” trick used in deriving 
(136), so that, by (165), 

T,=(s+l)M-n,s+2”‘-d-2. (166) 

Note that the T,, and, therefore, by ( 160), also A, and S,, are all independent 
of the &value b*. Furthermore, by (159), the nodes N,, and N2”+i (right-children 
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of the children of the parent of N,) will share the values of T,, = T,,,., A,. = A,.., and 
Ssf=S,..; once ~>2~-+-’ (i.e., by the argument between (158) and (159), once 
NZY and Nzy+ 1 are out of the apex), 

T,,=T,.=(2s+Y+l)M+~,+1)(2s+Y)+2”~+’-+2 

=2T,-2s+Y(M-n,-l)-(M-d-2). (167) 

Until then, n, and s both remain zero. 
The total number of occurrences of b* in Levels 0 through k = 2M- q5 - 2 is, by 

Lemma 20, 2kPM+m = 2”-2, and so s will run from 0 through 2MP ’ - 1. Even 
though, as we have seen, we can economize by using the same parameters for all 
values of b* (see (160)), it is still not practical to store such a large number of coef- 
ficients (typically, as we have noted, M= 48 and 2”-2 z 7 x 10L3), so they must be 
computable when needed. To do this, we return to the concept of a node record, 
carrying all the information needed to generate both the left-slanting “regular” 
branch or sequence, and any right-children, whenever the latter are required. In 
order to generate the regular left-slanting branch according to the generator oP = 
G(a, b,, xflO), it suffices that the node record should carry b, and xv, where, as in 
(88), v = 2m(2p + 1). The record IF&, = (2”‘+lNP, b,, xPCm+ 1j) can be obtained from 
R, = (2”N,, b,, xPm) (see (89)), by (129) and (130), as in Algorithm 1. However, 
this record will have to be extended, to carry all the information needed to generate 
any right-children that may be needed: we shall denote this expanded record by 

w = I%; Cl, (168) 

where C, denotes the additional information. By Definition 7, like a and M (or 
Q = 2”); 4 (or 2”), I,G (or 2@), b, = 28 + 1, and f0 are universal parameters of the 
algorithm. The record R, thus suffices also to enable us to compute the node 
number, N, = 2v+ 1, of the right-child and the new b-value, b,= b* = 
(2’h+b,IQ) (see (134)). However, to determine xVO by (160) and (161), with a 
possible parity skip, we need, apart from the universal parameters Ic/ and fO, and 
their derived parameter x*, to have the coefficients A, and S,. 

We note, by Lemma 13 with (94), that a2MmZ= 1 (mod 2”), whence 

ci=a 
p-2-, 

(169) 

acts as the reciprocal of a, modulo 2M = Q, in the sense that a factor a-‘, appearing 
in any integer-valued product, reduced modulo Q, may be replaced by the factor ri’. 
(Suppose that such a product is X= Ya-‘, where X must be an integer, by our 
hypothesis. Then Y = Xu’; and, therefore, Y&’ = Xu’ci’ = X(aa)’ = X(aZM-*)? = X= 
Yu-’ (mod Q).] Thus, by (160), (166), and (169), 

= 
(a 

M--)-ZaMs~n,sa2”r, Q >. (170) 
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When we turn to the other coefficient, S, = S,$(a), that we shall need to carry at 
every node, we first need to establish some straightforward properties of the 
function S,(z). 

LEMMA 24. For any non-negative integers p and q, and real z, 

~p+qCz, = S,(z) + z”S,(z); 

s,-,(z)=sp(z)-z~--‘sq(z), if PB% 

S,,(z) = S,(z) Sq(zP); 

(171) 

(172) 

(173) 

and, in particular, 

S*,(z) = (1 + z) SP(Z2) = (1 + z”) S,(z). (174) 

Proof: We refer to the definitions in Eq. (5). If z= 1, then, by (6), (Vn 20) 
z” = 1 and S,( 1) = n, whence (171)-j 174) all hold, as is trivial to verify. Similarly, 
if p=O or q=O, or p= q in (172) then (171~(174) all hold trivially. Suppose, 
therefore, that z # 1, p > 0, q > 0, and p > q in (172). Then, first, 

~p+,(4=l+z+z2+ ... +zp-l+,$+p+1+ . . . +zP+4-1 

=(l +z+z*+ .. . +zPP1)+zp(l+z+z*+ . . . +zY-l), 

from which (171) follows at once. Replacing p by p’ in ( 17 1) and rearranging terms, 
we get 

S,.(z) = S,,+,(z) - zP’S,(z), (175) 

whence (172) follows immediately, when we write p’ =p -4. Now, by repeated 
application of (171), we see that 

%,Cz) = %+p(q-I) (z) = S,(z) + ZPSp(,- 1)(Z) 

= S,(z) + zPSp(z) + z2TYp(q-*)(z) 

= S,(z) + zPSp(z) + z2psp(z) + z3PLsp(q_3)(z) 

= . . . =S,(z){l +zp+z*p+z3p+ . . . ++-lq 

which yields (173). Finally, we note that the equality of the first and second 
members of (174) is Lemma 1 (Eq. (8)), while, if we put q= p in (171), we get the 
equality of the first and third members of (174). Also, the same two identities are 
obtained, respectively, by putting p = 2 (and then replacing q by p) and by putting 
q=2, in (173). 1 
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By (166) (169), and (171)-(173) of Lemma 24, we see that 

STs(U) = s (s+l)M--n,s+2”s-~-2Z(u) = SMss--n,s+2”s+M-~-2(~) 

= s&f* ~ n,s + *da) + a Ms--~s+*nsS~U~)_2(u) 

=SiUs-“,s(u)+uMS-n~s(S*“~(u)+u2”sS,~~~2(u)} 

= S,(a) - &+f-n*s {~,~~(~)-~2.~(~)-~2”s~,-,-2(~)} 

= S,(u) &(a”) - uMs-nss ~S,,(U)-S~~~(U)-U*““S,-,-,(U)}, (176) 

so that, by (160) and (176) 

ss= (ST$(U)I e> 
= (S,(u) SB(uM)-uaMs~n,s{Sn,s(u)- S2~,(u)-u2”sS~~O~Z(u)} 1 Q). (177) 

An examination of (170) and (177) reveals the parameters which need to be 
carried in the record R,*, and updated from father-node to children, to execute the 
algorithm. (The need for some of these will only be seen when the details of the 
algorithm are examined.) The supplementary universal parameters of the algorithm 
(i.e., those independent of s), 

Kc,= <S,Cu)lQ>, Kc?= (s,-,-,(a)lQL 

K,=(a”IQ>, K:=(u~-"~*~Q), (178) 

K2= (a21Q>, K~=(u*~~~~*~Q)=(,~,Q), 

are computed once and for all, and stored with A4 (and Q = 2”), a, 4, +, b,, f,, 
and ci, to be used at all nodes. (The congruence for KT is a consequence of 
Lemma 13 with (94).) This leaves thirteen variable (s-dependent) coefficients to be 
added to R, to make up R,?, namely, 

us= (aZslQ>, V,= (~‘~1 Q>, Ws= (a”sslQ>, 
U:= (ri2”IQ), V,* = (iPI Q), W,* = (PlQ), 

Xs= (a*“‘lQ>, Ys= (%(a)lQ>, Zs= W&4lQh (179) 
C=<aMslQ>, Y:= <SAa”)lQ>, Z: = (S,Ja) I Q >, 

X,t= (S,da)lQ). 

Using (159) and Lemma 24, we can now compute the update relations for these. As 
was remarked at (148) and (149), and by (154), when O<V<~~-@, n,=s=O, 
whence, for all such v, 
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Now, note that the bit Y = Bw-,-l can only be 0 or 1, and S,(z) =0 and 
S,(z)= 1, so that 

S,(z) = Y and S,,(z) = YW). (181) 

Similarly (although it is usually simplest to take zy as the conditional: zy = 1 if 
Y = 0, zy = z if Y = l), it can be useful, instead, to use the identity 

zY=l+(z-1)Y. (182) 

Also, repeated factors Y, in the same term can be simplified, since 

Y2=Y and YzY = Yz. (183) 

Thus, for all v 2 2”--9-1 (when either s = 0 and Y = 1, or s > 1; as is noted between 
(158) and (159)), we have, in the simplest terms, modulo Q: 

Us.= Us,,,a2(2s+y)~ U2K,Y, s 
V,, = Vs.. G a”$+ ’ = ansa G V,a, 

w,,= W~,,~a’“‘+‘)‘2”+Y)=a2”‘“+2s+n,Y+Y 

z W,’ U,( Vsa)Y z W,’ Us VJ, 

uf = u;, E &2(2s+y) - U;2K?y, 

v; = py, E p + 1 = $q E v,*Lf, 

W$= W~,~Ci(“‘+1)(Zs+Y)=Lj2n*s+2s+n,Y+Y 

E W,*‘U,*( V,*ci)’ z w,*‘u,* vy, 

Jf,. = x,,, c a2”‘+ ’ = ( a2”s)2 E x,‘, 

Y,, = Y,.. e s 2(2s+y)(4= (1 +a2’+‘) S2,+y(4 

= (1 + UsaY)[S2s(a) + a2”Sy(a)] 

= (1 + UsaY)( Y, + U,Y), 

z,, = z,.. = S”* + 1 (a) = S,ja) + a”“S,(a) 3 Z, + V,, 

&y$ = p, E aM(2S+Y) = x*zp - s 1, 

Y: = Y$ = S2s+y(aM) = Sb(aM) + a2M”Sy(aM) 

= (1 + aMs) S,(a”) + Xz2Y 

=(1+X,*) Y,*+JC,*‘Y, 

(184) 

(185) 

(186) 

(187) 

(188) 

(189) 

(190) 

(191) 

(192) 

(193) 

(194) 
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Z~=Z~‘~S~n,+1)(2s+Y)(u)=S2”,s+2s+n,Y+Y(u) 
=s 2n,s+*s+n,Y(~)+~2nss+2s+“sYSY(~) 

- S 2n,S+2S(4 + a 2nss + qy(u) + w,‘u, V,yY 

= S2n,s(u) + u2nYs*s(u) + W,‘U,Y(Z, + V,) 

= (1 + P) S&2) + Wf[ Y, + U,Y(Z, + V,)] 

=(l+ w,)z,*+ w;[Y,+ U,Y(z,+ V,)], (195) 

A-f, =x$ zi S2”r+l(u) = s2x2”s(u) E (1 +A!,) q. (196) 

In terms of these coefficients, we see that (170) and (177) become 

A,= (K:J’,*WjrXslQ) 
and 

S,=(K,Y,*-X,*W,*{Z,*-X,t-X,K,*}IQ). 

(197) 

(198) 

ALGORITHM 2. The procedure carries at each node, numbered v =2”N, = 
2*(2~+ l), a record (see (89), (168), and (179)) 

= P”N,, b,, x,,; 
us, vs, w,, u,*, v:, w,*, 
JJs, ys, z,, x,*, Y,*, zg, q-j, (199) 

the transformation for which, on passage to the two child-nodes is given by 

These mappings are defined as follows: 

(a) for R,: 

and 

LZT,,&v = 2mNP) = (2v = 2m+ ‘NJ, 

55’T,,,,(b-value at v = b,) = b,, 

=%,&-value at v = x,,,,) = (xpcm+ 1) = <uxpm + b, I Q >I; 

A? Ir,~,~(~=2mNP)=(N,=2v+1=2m+1Np+1), 

A? r,,Jb-value at v = b,) = (2% + bol Q), 
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Jlig,,,&x-value at v = xP,,) 

( i 

xf = (A,x* + S,b* 1 Q) whichever has the 
= xvo= (ax,?+b*IQ) same parity as xcun I) ’ 

where x* = (2%~~ +foj Q), b* = (2% + b,l Q), and A, and S, are computed from 
(197) and (198), using the coefficients in C,. 

(b) for C,: the coefficients remain at the values in (180) so long as v < 2”-*; 
and, whenever v > 2”--)-1, 

where the various symbols are defined in (178) and (179). 

A multiplication count [there are no divisions, and we may suppose that the 
reductions modulo Q are performed by truncation of binary computer words; also, 
we do not count multiplications by powers of 2, which can be performed by fast bit- 
shifts] yields 1 for generating the three components of R,, by PT.*@, and 9 or 10 
for generating the three components of [w2”+ r by AT,,,+ (including computing the 
current A, and S,); while, for generating the thirteen components of CzV and Czy + 1 
(which are identical), we require 15 multiplications when Y = 0, and 7 more when 
Y = 1. Thus, from Level M - 4 - 1 on, the algorithm takes, altogether, an average 
of 1 + 8 + 15 + 3 = 29 multiplications to generate the records lK!* of both children of 
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any given node (considerably less in the apex of the tree), or an average of 14.5 
multiplications per node. Since these nodes occur only every T pseudo-random 
numbers (as we explained earlier; see Lemma 18) and we expect T to be of the 
order of 10, with other steps taking 1 multiplication to perform, by (4), the overall 
expected number of multiplications per pseudo-random number generated will only 
be about 2.35, that is, between 2 and 3 times the time required by the highly 
efficient linear congruential generator itself, without any tree-structure. This would 
appear to be very satisfactory. 

6. COMPUTATIONAL RFSULTS 

A program was written in “c” to execute Algorithm 1. The section which inputs 
and computes the universal parameters of the algorithm, 

ANALYSIS M a bO f. l#J 9=2M 24 

PROGRAM M a b0 f0 qb Q qqb 

and initializes the first record, at the roof of the tree, takes just 10 commands 
[“scanf ( . . . )” being taken as one command, and “for ( . . )” being counted as a 
command additional to what it controls]: 

scanf("%ld %ld %ld %ld %ld", &M, &a, &bO, &fO, &qb); 
Q = 1; for (i = 0; i < M: it+) Q = Q * 2; 
qqb = 1; for (i = 0; i < qb; i++) qqb = qqb * 2; 

j = 1; bval[j] = b0; xval[j] = f0; 

Here, "bval[j]" stores the b-value and “xval t j I *' stores the x-value, at node 
number *‘ j ” 

The section which “builds the tree,” i.e., computes the records at the child-nodes 
of a given parent-node, takes 7 commands, including the “for ( . . . 1” loop over all 
parent nodes: 

for the left-child of node “i”: 

j++; 
bval[jl = bval[il; 
xval[j] = res(a * xval[i] + bval[il); 

for the right-child of node “i”: 

j++; 
bval[j] = res(qqb * i + b0); 
xval(j1 = xval[il; 

Here, “res (x)” denotes <X 1 Q> , the residue of ‘*x*’ modulo “Q “, 
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With M = 6 and I$ = 3, the computations covered the first 255 nodes of the tree 
(8 levels). The following eight sets of data were taken: 

a 21 37 5 53 45 13 21 5 

bo 3 63 7 1 11 33 11 33 

fo 7 57 5 1 37 33 0 42 

For every set of data, identical patterns of numbers of repetitions of initial (b, x)- 
values were observed: 

Level 0: 0 repetitions Level 4: 3 repetitions 
Level 1: 0 repetitions Level 5: 7 repetitions 
Level 2: 0 repetitions Level 6: 16 repetitions 

Level 3: 0 repetitions . * Level 7: 35 reDetltlons 

Since the values of a (subject only to (95)), b0 (odd), and f0 were chosen quite 
artlessly, the recurring pattern of repetitions suggests that a theorem underlies it: 
the number of repetitions at each level is probably a constant, depending only on 
M and 4. Further experimentation, varying M and 4, supports this conjecture. For 
example, covering the first 511 nodes, when M = 7 and 4 = 5, we get, both for a = 5, 
b, = 5, and f0 = 5, and for a = 37, 6, = 23, and f0 = 30, that the following patterns 
of numbers of repetitions of initial (b, x)-values occurred: 

Level 0: 0 repetitions Level 5: 9 repetitions 

Level 1: 0 repetitions Level 6: 17 repetitions 

Level 2: 0 repetitions Level 7: 22 repetitions 

Level 3: 2 repetitions 
. . 

Lwel8: 21reDetltlons 
Level 4: 4 repetitions . . 75 reDetltlons 

Another program was written in “c” to execute Algorithm 2. The section which 
inputs and computes the universal parameters of the algorithm and their immediate 
derivates, 

ANALYSIS M a b, fo 4 Y 
PROGRAM M a b0 f0 qb qx 

ANALYSIS 24 2w 99-H 9-4 2M-W Q=$ 

PROGRAM qqb qqx QQ QO Ql Q 

now takes 13 commands: 

scanf("%ld %ld %ld %ld %ld %ld", GM, &a, &bOr &fO, &qb, &qx): 
QQ = 1; for (i = qb + 1; i < M; i++) QQ = QQ * 2: 
QO = QQ * 2; Ql = QO * 2; 
qqb = 1; for (i = 0; i < qb; i++) qqb = qqb * 2; 
Q = qqb * QO; 
qqx = qqb: for (i = qb; i < qx; i++) qqx = qqx * 2; 



52 JOHN H. HALTON 

That which computes the parameters in (169) and (178) 

ANALYSIS 43 Ko* Kl Kl* Kz K2* 

PROGRAM KO KKO Kl KKl K2 KK2 

takes 18 commands: 

KKO = 1; " = a; 
for (i = qb + 3; i < M; i++) 

( KKO = res(KK0 + v); 
v  = res(v * a); 

I 
KKl = v; KO = KKO; 
for (i = -2; i < qb; i++) 

1 KO = res(K0 + VI; 
v  = res(v * a); , I 

Kl = v; K2 = res(a * a); 
aa = a; u = a; 
for (i = 3; i < M; i++) 

I u = res(u * u); 
aa = res(aa * u); 

I 
KK2 = res(aa * aa); 

f?i 

aa 

The initialization of the first record, at the root of the tree, takes 3 commands, as 
before: 

j = 1; bval[j] = b0; xval[j] = f0; 

There remain the 13 special coefficients (see (179) and ( 180)). 

ANALYSIS *s vs ws Us’ v ws* 

PROGRAM U[il V[il W[il UU[i] W[il m[il 

ANALYSIS x, Ys 2s xs* ys* 2; x,t 

PROGRAM X[il Y[il Z [il XX[i] YY [i] 22 [il XXX[il 

These are the same throughout the apex of the tree; but, because the apex is, for 
efficiency, “built” more simply than the rest of the tree, we do not need them in the 
body of the apex. We must, however, initialize the coefficients in level M - 4, and 
this takes 14 commands, including the "for ( . . . )” loop over all nodes in this level: 

U[i] = 1; V[i] = 1; W[i] = 1; 
UU[il = 1; W[i] = 1; WW[i] = 1; 
X[il = a; Y[il = 0; Z[i] = 0; 
XX[il = 1; YY[i] = 0; ZZ[i] = 0; 
XXX[i] = 1; 

The section which “builds the apex” takes 11 commands, including the "for (. . ) ” 
loop over all nodes in the apex [“if ( . . . ) . . . else. . . ” being taken as a command, 
additional to what it controls]: 
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b = res(qqb * i t b0); 
x = res(qqx l i + f0); 
jtt; bval[j] = bval[i]; 
xval[j] = res(a * xval[i] t bval[i]); 
jt+; bval[jl = b; 
if ((xval[i] t x) % 2 == 1) 

xval[j] = res(a * x t b); 
else xval[j] = x; 

Finally, the section which builds the rest of the tree takes 59 commands, including 
the“for (.. . ) ” loop over all nodes, and the copying of all coefficient values (which 
are common to both left and right children of any given node): 

for the left-child of node “i”: 

z = i % Ql; y  = z / QO; 
b = res(qqb * i t b0); x = res(qqx * i t f0); 
w = res(w[il * W[i]); z = res(XX[i] * XX[i]); 
jtt; bval[j] = bval(i]; 
U[j] = res(U[i] * U[il); V[jl = res(V[il * a); 
W[j] = res(w * U[i]); 
W[j] = res(W[i] * W[i]); W[jl = res(WIi1 * aa); 
WW[j] = res(WW[il * WW[il * W[i]); 
X[j] = res(X[i] * X[i]); 
if (y == 1) Y[j] = res(Y[i] t U[il); 
else Y[j] = Y[i]; 
if (y == 1) u = res(U[i] * a); 
else u = U[i]; 
Y[j] = res((l t u) l Y[jl); Z[j] = res(Z[il t V[i]); 
XX[jl = z; YY[j] = res((l t XX[il) * YY[il); 
if (y == 1) u = res(Y[i] t U[i] * (Z[i] t V[i])); 
else u = Y[i]; 
ZZ[j] = res((l t W[i]) * ZZ[i] t w * u); 
XXX[j] = res((1 t X[i]) * XXX[il); 
if (y == 1) 

1 U[j] = res(U[jl * K2); W[j] = res(W[j] * V[j]); 
W[j] = res(W[jl * KK2); WW[j] = res(WW[j] * W[j]); 
XX[jl = res(XX[jl * Kl); YYIj] = res(YY[jJ t z); 

xval[j] = res(a * xval[i] t bval[i]); 

for the right-child of node “i ,” first, copy all 13 coefficients; then: 

jtt; bval[j] = b; 
A[j] = res(KK1 * XX[j] * WW[j] * X[j]); 
S[jl = res(K0 * YY[j] - XX[j] * WW[j] 

* (ZZ[j] - XXX[j] - X[jl * KKO)); 
xval[j] = res(A[j] * x + S[j] * b); 
if ((xval[i] t xval[j]) % 2 == 1) 

xval[j] = res(a * xval[j] t b); 

Here, “ A [ j ] ” denotes A, at node “j ” and “s tjl” denotes S, at node “j ,” respec- 
tively, computed per (197) and (198). 

Thus, the avoidance of repetitions in the first k + 1 = 244 - q5 - 1 levels of the tree 
(and commensurate avoidance of repetitions thereafter, within 2k--M+4 = 2”-2 
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occurrences of any b-value) costs a factor of s z 6.94 in program-complexity. Note 
that what we have counted above are commands in the program listing, not 
executions (which are counted at the end of Section 5, for a factor of only 2.35 in 
computation time). 

With M = 6, 4 = 3, and $ = 4, the computations again covered the first 255 nodes 
(8 levels) of the tree. The same eight sets of data were tried, yielding the theoreti- 
cally predicted absence of repetitions in the first k + 1 = 2M- 4 - 1 = 8 levels. This 
confirms the efficacy of Algorithm 2. 

7. CONCLUSIONS 

We have presented here, in full and rigorous detail, the theory governing the 
linear congruential type of pseudo-random generator, as defined in (l)-(4). In 
keeping with the most frequent practice, we have concentrated on the length of the 
period of such sequences. Linear congruential sequences are periodic (Lemma 7) 
and have no repetition of x-values in a period (Lemma 17). Under the conditions 
that a E 1 (mod 4) and b E 1 (mod 2), the sequences are completely periodic 
(Lemma 9), with period Q = 2M (Lemma 12). This means that the sequence [xj],?YO 
(defined in (2)-(4)) will, in every period, pass just once through each integer value 
in the interval [0, Q - 11. By (l), the (similarly periodic) rational sequence [<j],‘O 
will thus pass exactly once in every period through each integer multiple of 2-M in 
the real interval [0, 1); yielding pseudo-random numbers whose distribution in 
[0, 1) is quite close to canonical uniformity. This property, given qualitative 
(“uniformity”) and quantitative (“coarseness”) precision in Definition 4, is, of 
course, crucial to the usefulness of such a sequence in performing Monte Carlo 
computations. 

Turning to branching processes, such as are useful in many Monte Carlo com- 
putations, we seek to define families of linear congruential generators which are 
easy to specify at any node of a binary tree, without storing all possible sets of 
parameters, since the growth of such storage would rapidly become completely 
prohibitive. Seeking a criterion which is both tractable and useful, for the indepen- 
dent behavior of sequences [xi],?YO and [xjt],:,, we look at the difference sequence 
[S,],?, (defined in (26)) and go, by analogy with the concepts of uniformity and 
coarseness, to those of “independence” and “consonance” given in Definition 5. A 
rather thorough analysis of this criterion is given here, giving conditions for low 
consonance between sequences generated at nodes which are close to each other in 
the tree. Further analysis, of discrepancies (see [2,3, 16-19, 23, and 241) and 
correlations of such proximate sequences, is envisaged for future research, to 
reinforce the results presented here. 

Three algorithms for the generation of suitable families of linear congruential 
sequences are analyzed here. The first is due to Warnock [25] and the other two 
(herein named Algorithms 1 and 2) are new. Algorithm 1 is similarly simple to 
Warnock’s, but has (as does Wamock’s algorithm) some problems, in this case 
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related to the rather early occurrence of repeated generators. These problems are 
addressed and substantially alleviated in Algorithm 2. It is calculated that the code 
required for the second, improved algorithm is six or seven times longer than for 
the first, and that the computation time required per random number is two to 
three times longer than is required by the basic (highly efficient) linear-congruential 
generator. 

While more research can usefully be done on this new tool, it would appear that 
a powerful and efficient technique has been introduced here, with considerable 
theoretical support. 
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